RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар «Глобус» (записи с 2011 года)
6 октября 2016 г. 15:40, г. Москва, конференц-зал НМУ (Москва, Большой Власьевский пер., 11)
 


Эллиптические гипергеометрические функции и их приложения

В. П. Спиридонов

Объединенный институт ядерных исследований, Лаборатория теоретической физики им. Н. Н. Боголюбова
Видеозаписи:
MP4 1,427.5 Mb
MP4 2,771.5 Mb
MP4 688.4 Mb

Количество просмотров:
Эта страница:147
Видеофайлы:54

В. П. Спиридонов


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Я кратко напомню классические результаты Эйлера по обычным и $q$-гипергеометрическим функциям. Затем приведу представление эллиптических функций в виде отношения произведений тэта-функций Якоби. Этот справочный материал необходимым для описания эллиптических гипергеометрических функций, появление которых на рубеже 2000 г. явилось полным сюрпризом, т.к. считалось, что специальные функции гипергеометрического типа с “классическими” свойствами существуют только в двух ипостасях — обычном и его $q$-аналоге. Трансцендентные эллиптические гипергеометрические функции определяются интегральным представлением, описание которого будет дано следуя идеям Похгаммера-Хорна. Это приведет к “эллиптическим” обобщениям гамма-функции, бета-интеграла, гипергеметрической функции Эйлера-Гаусса, гипергеометрического уравнения, интеграла Сельберга и других специальных функций.
Как положено специальным функциям математической физики, эллиптические гипергеометрические интегралы нашли важные приложения в теоретической физике. В частности, они описывают собственные функции гамильтонианов некоторых интегрируемых $N$-частичных систем квантовой механики. В четырехмерной квантовой теории поля они определяют суперконформные индексы суперсимметричных теорий, а их свойства дают наиболее строгое математическое подтверждение гипотезы дуальности Зайберга для ряда суперконформных теорий поля. В статистическое механике, те же самые интегралы описывают наиболее общие известные решаемые модели на двумерных решетках и наиболее сложные решения уравнения Янга-Бакстера. Этот материал будет описан в докладе на качественном уровне.

Список литературы
  1. В.П. Спиридонов, “Очерки теории эллиптических гипергеометрических функций”, УМН, 63:3 (2008), 3–72  mathnet  crossref  mathscinet  zmath
  2. В.П. Спиридонов, “Эллиптические гипергеометрические функции”, дополнительная глава в книге Р. Аски, Р. Рой, Дж. Эндрюс, Специальные функции, МЦНМО, Москва, 2013, 577–606


ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017