RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Автоморфные формы и их приложения
24 января 2017 г. 18:00, г. Москва, Факультет математики ВШЭ, ул Усачева 6, аудитория 306
 


Построение рода Виттена через деформационное квантование.

А. Приходько

НИУ ВШЭ

Количество просмотров:
Эта страница:37

Аннотация: По любой эллиптической кривой над C можно построить эллиптическую комплексно-ориентированную обобщённую теорию когомологий. С любой такой теорией стандартной процедуой связан C-значный род Хирцебруха. Род Виттена - это в некотором смысле универсальный эллиптический род. Он был определён (используя физические аргументы) в статье "E. Witten, Elliptic genera and quantum field theory" как суперконформный индекс в некоторой двумерной теории поля. В статье "A geometric construction of the Witten genus II" в качестве приложение развитого им подхода к теориям поля Кэвин Костелло приводит строгое математическое обоснование определения Виттена. Нужная теория поля для многообразия X получается деформационным кантованием классической теории построенной по (производному) пространству отображений из эллиптической кривой в T^* X. В своём докладе я расскажу этот подход Костелло.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017