RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Общеинститутский семинар «Коллоквиум МИАН»
6 апреля 2017 г. 16:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Гипотеза Хорна и правило Литтлвуда–Ричардсона

Е. Ю. Смирновab

a Независимый Московский университет
b Национальный исследовательский университет "Высшая школа экономики", г. Москва
Видеозаписи:
MP4 2,899.6 Mb
MP4 735.5 Mb

Количество просмотров:
Эта страница:684
Видеофайлы:215
Youtube Video:

Е. Ю. Смирнов
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Аннотация: Рассмотрим сумму двух эрмитовых матриц $A$ и $B$. Это снова будет эрмитова матрица. В 1912 году Герман Вейль задался таким вопросом: что можно сказать о ее собственных значениях, если известны собственные значения матриц $A$ и $В$? Во-первых, ясно, что след $A+B$ будет равен сумме следов исходных матриц; во-вторых, наибольшее собственное значение $A+B$ не превосходит суммы наибольших собственных значений $A$ и $B$. А какие еще есть ограничения?
В 1962 году Альфред Хорн выписал ряд неравенств на собственные значения матриц $A$, $B$ и $A+B$ и сформулировал гипотезу о том, что это полный набор условий. В 1999 году А. А. Клячко свел эту гипотезу к так называемой гипотезе о насыщении, которая вскоре после этого была доказана Алленом Кнутсоном и Терри Тао. Они же предложили описание неравенств Хорна при помощи комбинаторных диаграмм, называемых сотами (honeycombs).
Эти диаграммы – и неравенства Хорна – имеют самое прямое отношение к теории представлений полной линейной группы $GL(n)$, а также к исчислению Шуберта на грассманианах. Они, в частности, позволяют свести задачу о разложении тензорного произведения двух представлений $GL(n)$ на неприводимые компоненты к чисто комбинаторной задаче подсчета “пазлов” – замощений треугольника элементами мозаики определенного вида. Это дает новую интерпретацию такого классического комбинаторного сюжета, как правило Литтлвуда–Ричардсона. Я постараюсь объяснить, как связаны между собой эти задачи, а если останется время, расскажу о других геометрических задачах, в которых возникают соты и пазлы.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017