RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
18 мая 2017 г. 16:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


О некоторых результатах, связанных с гипотезой Римана

И. С. Резвякова
Видеозаписи:
MP4 1,640.6 Mb
MP4 416.2 Mb

Количество просмотров:
Эта страница:353
Видеофайлы:90
Youtube Live:

И. С. Резвякова
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Аннотация: Хорошо известная гипотеза Римана утверждает, что все нетривиальные нули дзета-функции Римана лежат на критической прямой $Re$ $s = 1/2$. В 1989 г. Атле Сельберг определил класс рядов Дирихле, для которых также предполагается справедливость аналога гипотезы Римана. Следующие утверждения доказаны для некоторых функций из класса Сельберга:

положительная доля нетривиальных нулей $L$-функции лежит на критической прямой;

почти все нетривиальные нули $L$-функции лежат в окрестности критической прямой;

значения логарифма $L$-функции на критической прямой асимптотически нормально распределены.

Оказывается, что эти результаты очень тесно взаимосвязаны.

По определению любая функция из класса Сельберга удовлетворяет функциональному уравнению Риманова типа и соответствующий ей ряд Дирихле разлагается в виде Эйлерова произведения. Однако, если мы рассмотрим нетривиальную линейную комбинацию (с вещественными коэффициентами) функций из класса Сельберга, удовлетворяющих одному и тому же функциональному уравнению, то полученная функция также будет обладать функциональным уравнением, но уже не будет иметь разложения в виде Эйлерова произведения. Оказывается, что такая функция имеет много нетривиальных нулей вне критической прямой, то есть она не удовлетворяет аналогу гипотезы Римана. Все же и для такой функции существует предположение, что почти все ее нетривиальные нули лежат на критической прямой. Безуслов- но для линейных комбинаций (с некоторыми естественными предположениями) $L$-функций из класса Сельберга можно доказать, что если каждая из $L$-функций, входящих в линейную комбинацию, имеет положительную долю нетривиальных нулей на критической прямой, то и сама линейная комбинация также имеет положительную долю нетривиальных нулей на критической прямой. То есть именно наличие Эйлерова произведения у $L$-функции вероятно обеспечивает справедливость гипотезы Римана.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017