RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Автоморфные формы и их приложения
4 июля 2017 г. 20:00, г. Москва, ПОМИ, Фонтанка 27, Санкт-Петербург
 


Эллиптическое гипергеометрическое уравнение

В. П. Спиридоновab

a Национальный исследовательский университет "Высшая школа экономики", г. Москва
b Объединенный институт ядерных исследований, Лаборатория теоретической физики им. Н. Н. Боголюбова

Количество просмотров:
Эта страница:28

Аннотация: Обычное гипергеометрическое уравнение - это дифференциальное уравнение второго порядка с тремя регулярными сингулярными точками. Оно решается в терминах 2F1 гипергеометрической функции Эйлера-Гаусса. Его эллиптическое обобщение представляет собой q-разностное уравнение второго порядка со специальными эллиптическими коэффициентами с модулярным параметром p. Оно решается в терминах эллиптического гипергеометрического интеграла с 7 свободными параметрами (в дополнение к p и q), обладающего W(E7) группой симметрии.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017