RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Автоморфные формы и их приложения
23 октября 2017 г. 18:00, г. Москва, факультет математики НИУ ВШЭ, Усачёва улица, дом 6, комната 306 (3 этаж)
 


Расширение модулей и калибровочные линейные сигма-модели

С. С. Галкин

Факультет математики, Национальный исследовательский университет «Высшая школа экономики»

Количество просмотров:
Эта страница:38
Youtube Video:





Аннотация: Иногда пространства периодов (или параметров) разных геометрических объектов совпадают или вложены друг в друга матрёшкой благодаря связывающим конструкциям (якобиана, Куммеровой поверхности, итп). Например, можно собрать матрёшки из модулей шестёрок точек на P^1, кривых рода 2, абелевых поверхностей, кубических поверхностей, поверхностей K3 и 4-мерных кубик. При таких расширениях модулей иногда получается обобщить формулировки известных теорем на большие классы объектов, но доказательства приходится придумывать новые. Об одном таком классе обобщений и доказательств я и расскажу. Этот класс является частным случаем мета-задачи: связать категорию пучков на многообразии модулей объектов в категории с исходной категорией. Для нахождения таких связей я рассмотрю чуть более общие геометрические данные так называемых калибровочных линейных сигма-моделей и их вариацию при изменении условия стабильности (поток ренормгруппы).

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018