RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Автоморфные формы и их приложения
13 ноября 2017 г. 18:00–19:30, г. Москва, факультет математики НИУ ВШЭ, Усачёва улица, дом 6, комната 306 (3 этаж)
 


Гипотеза о тета-блоках первого порядка. Часть 1: модулярные формы Зигеля.

В. А. Гриценко

Национальный исследовательский университет "Высшая школа экономики", г. Москва

Количество просмотров:
Эта страница:35

Аннотация: Тета-блоки — специальные бесконечные произведения, являющиеся голоморфными формами Якоби. Эти объекты имеют отношения к теории чисел, теории автоморфных форм, алгебрам Ли, алгебраической геометрии и теории струн. Гипотеза о тета-блоках порядка 1 была сформулирована в статье Gritsenko, Poor, Yuen в 2013 году. В двух докладах, 13 и 20 ноября, мы дадим решение этой проблемы в одном из самых интересных случаев, а именно, для форм Якоби минимального веса 2. В первом докладе мы дадим общих обзор, рассчитанный на всех слушателей немного знакомых с модулярными формами. Мы опишем формы Якоби, (пара)модулярные формы Зигеля рода 2, произведения Борчердса. Второй доклад, 20 ноября 2017 года, — Гипотеза о тета-блоках порядка. Часть 2: аффинные и гиперболические системы корней типа A_4, — будет посвящен теории произведений Борчердса и доказательству гипотезы о тета-блоках веса 2.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018