RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
15 марта 2018 г. 16:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Квантовые каналы: дилатации и виды сходимости

М. Е. Широков

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
Видеозаписи:
MP4 547.8 Mb
MP4 1,999.1 Mb
Материалы:
Adobe PDF 82.5 Kb

Количество просмотров:
Эта страница:451
Видеофайлы:135
Материалы:9
Youtube Video:

М. Е. Широков
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Аннотация: Квантовые каналы – это линейные вполне положительные сохраняющие след отображения банаховых пространств ядерных операторов. Дилатация Стайнспринга и связанная с ней унитарная дилатация позволяют представить квантовый канал в виде динамического отображения открытой квантовой системы, т.е. редукции (частичного следа) обратимой эволюции «большой» замкнутой квантовой системы.
В докладе сопоставляются равномерная и сильная сходимости бесконечномерных квантовых каналов, обсуждается их физический и информационный смысл. Основное внимание уделено вопросу о непрерывности дилатации Стайнспринга и унитарной дилатации относительно данных видов сходимости. Известная теорема Кречмана-Шлингемана-Вернера говорит о непрерывности дилатации Стайнспринга относительно равномерной сходимости. Мы рассмотрим модификацию этой теоремы на случай сильной сходимости квантовых каналов.
Для унитарной дилатации доказана непрерывность относительно равномерной сходимости и разрывность относительно сильной сходимости. Последнее означает существование сильно сходящихся последовательностей квантовых каналов, которые не представимы в виде редукции сильно сходящихся последовательностей унитарных эволюций. Получен простой критерий существования данного представления, рассмотрены его следствия.

Материалы: ssc_talk.pdf (82.5 Kb)

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018