Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
21 мая 2020 г. 16:00, г. Москва, online
 


Интегрируемы ли уравнения глубокой воды со свободной поверхностью?

В. Е. Захаровabc

a Физический институт им. П. Н. Лебедева Российской академии наук, г. Москва
b University of Arizona
c Сколковский институт науки и технологий
Видеозаписи:
MP4 952.2 Mb
Материалы:
Adobe PDF 15.7 Mb

Количество просмотров:
Эта страница:843
Видеофайлы:313
Материалы:72
Youtube Video:

В. Е. Захаров


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке



Аннотация: Мы показываем, что уравнения Эйлера, описывающие нестационарное потенциальное течение двумерной глубокой жидкости со свободной поверхностью при отсутствии гравитации и поверхностного натяжения, могут быть точно проинтегрированы при специальном выборе граничных условий на бесконечности, когда жидкость сжимается по автомодельному закону. Вопрос о точной интегрируемости жидкости с естественными граничными условиями на бесконечности остаётся пока открытым, хотя есть сильные аргументы, как аналитические так и полученные в результате численных экспериментов, в пользу этой гипотезы. Самый сильный из них – существование неопределенного (зависящего от выбора начальных условий) числа дополнительных интегралов движения, коммутирующих друг с другом. Другим значительным аргументом является точное сокращение коэффициента нетривиальных четырехволновых взаимодействий. Это сокращение объясняет сильное замедление процесса стохастизации, наблюдавшееся в численных экспериментах еще семидесятых годов прошлого века. Более современные эксперименты показывают аномально долгое существование солитона огибающих (брезера), который в неинтегрируемом случае быстро разрушается. Доказательство интегрируемости уравнений «глубокой воды» было бы открытием совершенно нового класса интегрируемых систем, отличного от уже известных науке.

Материалы: slides.pdf (15.7 Mb)

* Идентификатор конференции: 505 682 9814 Пароль: 248481

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021