Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars






Steklov Mathematical Institute Seminar
December 16, 2021 18:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


Fractal properties of the Hofstadter's butterfly and the singularly continuous spectrum of critical almost Mathieu operators

S. Ya. Zhitomirskaya
Video records:
MP4 403.6 Mb

Number of views:
This page:282
Video files:109
Youtube Video:

S. Ya. Zhitomirskaya


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке



Abstract: Harper's operator - the 2D discrete magnetic Laplacian - is the model behind the Thouless theory of the quantum Hall effect. The Harper operator spectra, as a function of magnetic flux, are organized into a remarkable self-similar structure: Hofstadter's butterfly. I will present recent results on the measure and dimension of the spectrum of this operator. The problem also reduces to a direct integral over the phase of critical almost Mathieu operators, and I will also discuss a solution to a 40+ year old problem - proof of the absence of a point spectrum for these operators, for all phases. The proof is based on simple harmonic analysis and a new Fourier type transform. I will also discuss recent advances in Thouless' "Catalan conjecture".

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022