RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика»
21 марта 2012 г. 18:30, г. Москва, Мех-мат МГУ, ауд. 16-22
 


О квантовании перемычек в уравнениях Джозефсона

А. А. Глуцюк

CNRS — Unit of Mathematics, Pure and Applied

Количество просмотров:
Эта страница:98

Аннотация: Уравнение, моделирующее эффект Джозефсона — это неавтономное дифференциальное уравнение на торе (произведении пространственной и временной окружностей), происходящее из физики сверхпроводников. Его правая часть — линейная комбинация синусов от временной и пространственной переменных и константы. Коэффициент при синусе от пространственной переменной мы фиксируем и возьмем его равным единице. Получается двупараметрическое семейство дифференциальных уравнений, зависящее от константы $a$ и коэффициента $b$ при синусе времени. Отображение Пуанкаре первого возвращения есть диффеоморфизм окружности. Его число вращение есть функция, зависящая от двух параметров. Языки Арнольда — это области в пространстве параметров, где число вращения принимает постоянное значение. В работах В. М. Бухштабера, О. В. Карпова и С. И. Тертычного были получены следующие результаты:
— языки Арнольда возникают только при целых значениях числа вращения;
— для каждого целого значения числа вращения соответствующие языки Арнольда образуют бесконечную цепочку примыкающих друг к другу областей, уходящих на бесконечность в вертикальном направлении.
Один из подходов к исследованию семейства уравнений Джозефсона состоит в комплексификации и исследовании ассоциированного с ним семейства линейных дифференциальных уравнений с комплексным временем, которые имеют две иррегулярных особенности: в нуле и на бесконечности. В ходе численных экспериментов, проведенных В. А. Клепцыным, Д. А. Филимоновым и И. Щуровым, было обнаружено, что перемычки (точки примыкания соседних областей) имеют целочисленные абсциссы (a-координаты), и все перемычки, отвечающие одному и тому же числу вращения, лежат на одной и той же вертикальной прямой с целочисленной абсциссой. Оказывается, что этот факт легко следует из классических результатов о явлении Стокса из теории линейных уравнений. Об этом и о смежных вопросах из теории линейных уравнений будет рассказано в докладе.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018