Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Forthcoming seminars

Seminar on Complex Analysis (Gonchar Seminar)
March 4, 2013 18:00, Moscow, Steklov Mathematical Institute, Conference Hall (8 Gubkina)

Quasiconformal maps and harmonic measure

S. K. Smirnovab

a University of Geneva
b Saint-Petersburg State University
Video records:
Flash Video 601.0 Mb
Flash Video 3,601.7 Mb
MP4 601.0 Mb

Number of views:
This page:2706
Video files:958

S. K. Smirnov
Photo Gallery

Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Abstract: Harmonic measure (of a boundary of a domain) is a fundamental notion in complex analysis, and can be defined in many ways: as an elctrostatic equilibrium distribution, as the exit probability for the Brownian motion, as a measure providing a solution to the Dirichlet boundary value problem. For simply connected planar domains harmonic measure is the image of length under the uniformization map from the unit disk, ans so many important questions in complex analysis can be reduced to the investigations into its multifractal properties, i.e. the study of the sets, where the measure staisfies a prescribed power law. We will discuss possible approaches to these questions using quasiconformal maps and holomorphic motions. Motivation comes from dynamical systems and mathematical physics, but as a result we return again to questions from classical complex analysis.
We will tell about our project in progress with Kari Astala and Istvan Prause, which aims at describing the dimensional structure of the harmonic measure in the plane.

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021