Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Семинар «Глобус» (записи с 2011 года)
25 апреля 2013 г. 15:40, г. Москва, конференц-зал НМУ (Москва, Большой Власьевский пер., 11)
 


On the size of generators of solutions of some Diophantine equations

М. Хиндриab

a Université Paris VII – Denis Diderot
b Лаборатория Понселе Независимого московского университета
Видеозаписи:
Flash Video 476.8 Mb
Flash Video 252.4 Mb
MP4 252.4 Mb
MP4 476.8 Mb

Количество просмотров:
Эта страница:219
Видеофайлы:17


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Аннотация: It has been known since at least Fermat that the set of integral solutions to the equation $x^2-dy^2=1$ form a finitely generated group of rank one. It has been known since at least Poincaré that the set of rational solutions to equations of the type $y^2=x^3+ax+b$ form a group; in fact, as Mordell proved, the latter group is also finitely generated.
There is a natural notion of size or height of solutions, so an important and natural question is to estimate the minimal size of a set of generators. The questions can easily be generalized on one hand to the group of units of a number field and, on the other hand, to the group of rational points of an abelian variety over a global field.
The answer for the first case is essentially known, though there are important unsettled related questions; the answer for the second case is essentially conjectural. We will discuss what we know, conjecture and give examples where theorems may be proven. This will take us to a journey through some arithmetic geometry, zeta functions etc., i.e. several number theorists favourite toys.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021