Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Математический кружок
13 сентября 2013 г. 17:00, г. Долгопрудный, 115 КПМ МФТИ
 


Томография и обратная задача рассеяния. Часть 4

Р. Г. Новиков

École Polytechnique, Centre de Mathématiques Appliquées
Материалы:
Adobe PDF 285.5 Kb
Adobe PDF 325.0 Kb
Adobe PDF 152.2 Kb

Количество просмотров:
Эта страница:222
Материалы:35
Youtube Video:





Аннотация: Томография известна прежде всего как область исследований связанная с задачей определения структуры обьекта по его рентгеновским снимкам. В настоящий момент в дополнение к этой классической томографии достаточно хорошо известны также несколько других томографий, где вместо рентгеновских снимков используются некоторые другие спектральные данные. При этом, различные томографические задачи тесно связаны с обратными задачами рассеяния. Эти задачи возникают, в частности, в медицинской диагностике, техническом контроле и различных областях физики. Методы интегральной геометрии и комплексного анализа входят в число наиболее эффективных математических методов используемых в задачах томографии и обратного рассеяния. Целью этого курса является введение в эту область исследований. При этом, следующие темы будут, в частности, рассмотрены:
1. Рентгеновская томография и классическое преобразование Радона. Описание рентгеновских снимков в терминах преобразования Радона вдоль прямых. Формулы обращения Радона и Кормака. Моменнтые условия Гельфанда–Граева и уравнение Джона.
2. Обобщенные преобразования Радона и однофотонная эмиссионная томография: Описание эмиссионных данных в терминах преобразования Радона с поглощением вдоль ориентированных прямых. Весовые преобразования Радона и приближенная формула обращения Чанга. Точная формула обращения для классического преобразования Радона с поглощением.
3. Обратная задача рассеяния для многомерного уравнения Шредингера: Формулы и уравнения прямой задачи рассеяния. Явные линейные приближенные формулы для решения обратной задачи рассеяния. Точные методы восстановления потенциала по данным рассеяния. Приложения к теории солитонов.
4. Электрическая томография и обратная задача Гельфанда–Кальдерона: Соотношение между напряжениями и токами на границе как Дирихле–Нейман оператор. Метод восстановления через сведение к обратной задаче по данным «рассеяния» Фаддеева.

Материалы: lectures1_6_1.pdf (285.5 Kb), novikov_school2012.pdf (325.0 Kb), rm2_09.pdf (152.2 Kb)
Цикл докладов

Статьи по теме:

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021