RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Стохастический анализ в задачах
21 декабря 2013 г. 11:00, г. Москва, Большой Власьевский переулок, дом 11
 


PAC-байесовское эмпирическое неравенство Бернштейна

И. О. Толстихин

Вычислительный центр им. А. А. Дородницына РАН, г. Москва
Материалы:
Adobe PDF 1.1 Mb

Количество просмотров:
Эта страница:134
Материалы:46

Аннотация: Доклад посвящен PAC-байесовскому обучению (PAC-Bayes supervised learning) - относительно новому и многообещающему направлению в теории статистического обучения. Данный подход позволяет с легкостью получать вычислимые по данным оценки обобщающей способности (как классический подход Вапника-Червоненкиса), учитывающие при этом априорную информацию о задаче (как байесовские подходы). В докладе будет приведен обзор основных результатов подхода, включая наиболее сильные из известных на сегодняшний день: PAC-байесовское kl-неравенство М.Зигера (PAC-Bayes-kl) и PAC-байесовское неравенство Бернштейна, предложенное Е.Сельдиным и соавторами. Также будет приведено новое PAC-байесовское эмпирическое неравенство Бернштейна, основанное на технике самоограничивающих функций (self-bounding functions) в теории неравенств концентрации. Предлагаемое неравенство улучшает упомянутые выше результаты в том случае, когда эмпирический риск рассматриваемых отображений существенно превышает выборочную дисперсию их ошибок.

Материалы: tolst13pbeb_ru.pdf (1.1 Mb)

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020