The symmetry of a spectrum of nuclear operators in subspaces of L_p -spaces

O. I. Reinov

^aSaint Petersburg State University

It was proved in the paper [1] that the spectrum of a nuclear operator A acting on a separable Hilbert space is central-symmetric if and only if trace $A^{2n-1} = 0$, $n \in \mathbb{N}$.

We prove:

THEOREM. Let Y be a subspace of a quotient (or a quotient of a subspace) of an L_p -space, $1 \le p \le \infty$ and $T \in N_s(Y,Y)$ (s-nuclear), where 1/s = 1 + |1/2 - 1/p|. The spectrum of T is central-symmetric if and only if trace $A^{2n-1} = 0, n = 1, 2, \ldots$

Remark. T is s-nuclear, if T admits a representation

$$T = \sum_{i} \lambda_i y_i' \otimes y_i,$$

where $(\lambda_i) \in l_s$, (y_i') and (y_i) are bounded.

References

M.I. Zelikin, "A criterion for the symmetry of a spectrum", Dokl. Akad. Nauk, 418:6 (2008), 737–740.