My Japanese book, Theory of Besov spaces, including a remark on the space S' over P

Y. Sawano

Tokyo Metropolitan University

Let \mathcal{S}' denote the set of all Schwartz distributions and \mathcal{P} the set of all polynomials. If we define \mathcal{S}_{∞} to be the set of all $f \in \mathcal{S}$ such that $\int_{\mathbb{R}^n} x^{\alpha} f(x) dx = 0$ for all α , we can consider the dual space \mathcal{S}'_{∞} .

We know that \mathcal{S}'_{∞} is isomorphic to \mathcal{S}'/\mathcal{P} as linear spaces. But it seems to me that this is true topologically. In my Japanese book, I wrote a proof but I have committed the mistake. But recently I modified the proof. My result is as follows.

Theorem. Equip S' and S'_{∞} with the weak star topology. Then the restriction mapping from S' to S'_{∞} is open.

References

- [1] S. Nakamura, T. Noi, Y. Sawano, "Generalized Morrey spaces and trace operator" (to appear).
- [2] Y. Sawano, Theory of Besov Spaces, Nihon-Hyoronsha, 2011 (in Japanese), 440 pp.