SOBOLEV SPACES, GEOMETRIC FUNCTION THEORY and APPLICATIONS

Sergey VODOPYANOV

SOBOLEV Institute of Mathematics, Novosibirsk, RUSSIA

International Conference devoted to 110th Anniversary of S. M. Nikolskii, Moscow, May 25 – 29, 2015

Sobolev Homeomorphisms and their Inverse A new approach to mappings with bounded distortion Problems of non-linear elasticity theory

The talk is devoted to the memory of S. M. Nikolskii

Lay-out of talk

- 1 Sobolev Homeomorphisms and their Inverse
 - Some Preliminaries
 - Definition
 - Main Result
 - Some Corollaries
- 2 A new approach to mappings with bounded distortion
 - Mappings with bounded distortion
 - New Definition
 - Motivations for studying more general mappings
 - Poletskiy function and its applications
- 3 Problems of non-linear elasticity theory

Classical results on inverse mappings

Let $D \subset \mathbb{R}^n$ be an open set, $\varphi : D \to \mathbb{R}^n$ be C^1 -injective mapping, and $\det D\varphi(x) \neq 0$. Then $\varphi(D) = D'$ is an open set, $\psi = \varphi^{-1} : D' \to D$ belongs to C^1 and $\det D\varphi^{-1}(y) \neq 0$.

Classical results on inverse mappings

Let $D \subset \mathbb{R}^n$ be an open set, $\varphi : D \to \mathbb{R}^n$ be C^1 -injective mapping, and $\det D\varphi(x) \neq 0$. Then $\varphi(D) = D'$ is an open set, $\psi = \varphi^{-1} : D' \to D$ belongs to C^1 and $\det D\varphi^{-1}(y) \neq 0$.

The inverse mapping to a quasiconformal one is also qc.

In another words, the inverse to a Sobolev homeomorphism $\varphi:D\to D'$ of $W^1_{n,\mathrm{loc}}$ with the condition $|D\varphi(x)|^n\leq KJ(x,\varphi)$ a. e., has the same properties.

Classical results on inverse mappings

Let $D \subset \mathbb{R}^n$ be an open set, $\varphi : D \to \mathbb{R}^n$ be C^1 -injective mapping, and $\det D\varphi(x) \neq 0$. Then $\varphi(D) = D'$ is an open set, $\psi = \varphi^{-1} : D' \to D$ belongs to C^1 and $\det D\varphi^{-1}(y) \neq 0$.

The inverse mapping to a quasiconformal one is also qc.

In another words, the inverse to a Sobolev homeomorphism $\varphi:D\to D'$ of $W^1_{n,\mathrm{loc}}$ with the condition $|D\varphi(x)|^n\leq KJ(x,\varphi)$ a. e., has the same properties.

The inverse mapping to a quasiisometric one is also quasiisometric.

In another words, the inverse to a homeomorphism $\varphi:D\to D'$ of $W^1_{\infty,\mathrm{loc}}$ with $|D\varphi(x)|\leq M<\infty$ and $|J(x,\varphi)|\geq \mu>0$ a. e., has the same properties.

General problem:

What properties has the inverse mapping to some Sobolev homeomorphism?

Sobolev space $L^1_p(D)$, $D \subset \mathbb{R}^n$, $p \in [1, \infty]$,

consists of locally integrable functions $f:D\to\mathbb{R}$ having the first generalized derivatives $\frac{\partial f}{\partial x_i}(x)$:

$$\int\limits_{D} \frac{\partial f}{\partial x_{i}}(x)\varphi(x)\,dx = -\int\limits_{D} f(x)\frac{\partial \varphi}{\partial x_{i}}(x)\,dx \quad \forall \varphi \in C_{0}^{\infty}(D),$$

$$i=1,\ldots,n$$
, and the finite seminorm $\|f\mid L_p^1(D)\|=\|\nabla f\mid L_p(D)\|$, $\nabla f=\left(rac{\partial f}{\partial x_1},\ldots,rac{\partial f}{\partial x_n}
ight)$.

Sobolev space $L_p^1(D)$, $D \subset \mathbb{R}^n$, $p \in [1, \infty]$,

consists of locally integrable functions $f:D\to\mathbb{R}$ having the first generalized derivatives $\frac{\partial f}{\partial x_i}(x)$:

$$\int\limits_{D} \frac{\partial f}{\partial x_{i}}(x)\varphi(x)\,dx = -\int\limits_{D} f(x)\frac{\partial \varphi}{\partial x_{i}}(x)\,dx \quad \forall \varphi \in C_{0}^{\infty}(D),$$

 $i=1,\ldots,n$, and the finite seminorm $||f||L_p^1(D)||=||\nabla f||L_p(D)||$, $\nabla f=\left(\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_n}\right)$.

$$W_p^1(D) = L_p(D) \cap L_p^1(D)$$
 with the finite norm $||f||W_p^1(D)|| = ||f||L_p(D)|| + ||\nabla f||L_p(D)||.$

Sobolev space $L_p^1(D)$, $D \subset \mathbb{R}^n$, $p \in [1, \infty]$,

consists of locally integrable functions $f:D\to\mathbb{R}$ having the first generalized derivatives $\frac{\partial f}{\partial x_i}(x)$:

$$\int\limits_{D} \frac{\partial f}{\partial x_{i}}(x)\varphi(x)\,dx = -\int\limits_{D} f(x)\frac{\partial \varphi}{\partial x_{i}}(x)\,dx \quad \forall \varphi \in C_{0}^{\infty}(D),$$

$$i=1,\ldots,n$$
, and the finite seminorm $||f||L_p^1(D)||=||\nabla f||L_p(D)||$, $\nabla f=\left(\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_p}\right)$.

$$W_p^1(D) = L_p(D) \cap L_p^1(D)$$
 with the finite norm $||f||W_p^1(D)|| = ||f||L_p(D)|| + ||\nabla f||L_p(D)||.$

$$f \in W^1_{p,loc}(D) \iff f \in W^1_p(\Omega) \text{ for any } \Omega \subseteq D.$$

Two distortion functions.

For mapping $\varphi: D \to \mathbb{R}^n$, $D \subset \mathbb{R}^n$, $n \ge 2$, of $W^1_{1,loc}(D)$ with the finite codistortion: $J(y,\psi) = 0$ implies adj $D\psi(y) = 0$ a.e., define

$$D\ni x\mapsto \mathcal{K}_{\varphi,p}(x)=\begin{cases} \frac{|\operatorname{adj} D\varphi(x)|}{|J(x,\varphi)|^{\frac{n-1}{p}}} & \text{at } x\in D\setminus Z,\\ 0 & \text{otherwise.} \end{cases} \tag{1}$$

Recall that adj $D\varphi(x) \cdot D\varphi(x) = \det D\varphi(x) \cdot E$.

Two distortion functions.

For mapping $\varphi: D \to \mathbb{R}^n$, $D \subset \mathbb{R}^n$, $n \ge 2$, of $W^1_{1,loc}(D)$ with the finite codistortion: $J(y,\psi) = 0$ implies adj $D\psi(y) = 0$ a.e., define

$$D\ni x\mapsto \mathcal{K}_{\varphi,p}(x)=\begin{cases} \frac{|\operatorname{adj} D\varphi(x)|}{|J(x,\varphi)|^{\frac{n-1}{p}}} & \text{at } x\in D\setminus Z,\\ 0 & \text{otherwise.} \end{cases} \tag{1}$$

Recall that adj $D\varphi(x) \cdot D\varphi(x) = \det D\varphi(x) \cdot E$.

For mapping $\psi: D' \to \mathbb{R}^n$, $D \subset \mathbb{R}^n$, $n \geq 2$, of $W^1_{1,\text{loc}}(D')$ with the finite distortion: $J(y,\psi)=0$ implies $D\psi(y)=0$ a.e., define

$$D'\ni y\mapsto \mathcal{K}_{\psi,q'}(y)=\begin{cases} \frac{|D\psi(y)|}{|J(y,\psi)|^{\frac{1}{q'}}} & \text{at } y\in D'\setminus Z',\\ 0 & \text{otherwise.} \end{cases} \tag{2}$$

Description of the inverse mappings

Theorem 1 [1-3]. Let a homeomorphism $\varphi: D \to D'$ have the following properties:

- 1) $\varphi \in W^1_{q,loc}(D)$, $n-1 \le q \le \infty$,
- 2) φ has the finite codistortion: adj $D\varphi(x)=0$ a. e. on a set

$$Z = \{x \in D : J(x,\varphi)\},\$$

3)
$$\mathcal{K}_{\varphi,p}(\cdot) \in L_{\varrho}(D)$$
 where $\frac{1}{\varrho} = \frac{n-1}{q} - \frac{n-1}{p}$, $n-1 \le q \le p \le \infty$.

Description of the inverse mappings

Theorem 1 [1-3]. Let a homeomorphism $\varphi: D \to D'$ have the following properties:

- 1) $\varphi \in W^1_{q,loc}(D)$, $n-1 \leq q \leq \infty$,
- 2) φ has the finite codistortion: adj $D\varphi(x)=0$ a. e. on a set

$$Z = \{x \in D : J(x, \varphi)\},\$$

3)
$$\mathcal{K}_{\varphi,p}(\cdot) \in L_{\varrho}(D)$$
 where $\frac{1}{\varrho} = \frac{n-1}{q} - \frac{n-1}{p}$, $n-1 \le q \le p \le \infty$.

Then the inverse homeomorphism has the following properties:

4)
$$arphi^{-1} \in W^1_{p', \mathsf{loc}}(D')$$
, где $p' = rac{p}{p-n+1}$,

5) φ^{-1} has the finite distortion,

6)
$$K_{\varphi^{-1},q'}(\cdot) \in L_{\varrho}(D')$$
 where $q' = \frac{q}{q-n+1}$.

Description of the inverse mappings

Theorem 1 [1-3]. Let a homeomorphism $\varphi: D \to D'$ have the following properties:

- 1) $\varphi \in W^1_{q,loc}(D)$, $n-1 \leq q \leq \infty$,
- 2) φ has the finite codistortion: adj $D\varphi(x)=0$ a. e. on a set
- $Z = \{x \in D : J(x, \varphi)\},\$
- 3) $\mathcal{K}_{\varphi,p}(\cdot) \in L_{\varrho}(D)$ where $\frac{1}{\varrho} = \frac{n-1}{q} \frac{n-1}{p}$, $n-1 \le q \le p \le \infty$.

Then the inverse homeomorphism has the following properties:

- 4) $arphi^{-1} \in W^1_{p',\mathsf{loc}}(D')$, где $p' = rac{p}{p-n+1}$,
- 5) φ^{-1} has the finite distortion,
- 6) $K_{\varphi^{-1},q'}(\cdot) \in L_{\varrho}(D')$ where $q' = \frac{q}{q-n+1}$.

Moreover, $\|K_{\varphi^{-1},q'}(\cdot) \mid L_{\varrho}(D')\| = \|\mathcal{K}_{\varphi,p}(\cdot) \in L_{\varrho}(D)\|$.

New definition of quasiconformal mapping.

Definition. A homeomorphism $\varphi:D o D'$ belonging to $W^1_{n,\operatorname{loc}}(D)$

and meeting $|D\varphi(x)|^n \le K|J(x,\varphi)|$ for almost all $x \in D$, is called *quasiconformal*.

New definition of quasiconformal mapping.

Definition. A homeomorphism $\varphi:D o D'$ belonging to $W^1_{n,\mathrm{loc}}(D)$

and meeting $|D\varphi(x)|^n \le K|J(x,\varphi)|$ for almost all $x \in D$, is called *quasiconformal*.

(New definition of quasiconformality). Let $\varphi: D \to D'$ be a homeomorphism belonging to $W^1_{n,loc}(D)$.

If for some nonnegative number $M \in \mathbb{R}$ the inequality

$$|\operatorname{adj} D\varphi(x)|^{\frac{n}{n-1}} \leq M|J(x,\varphi)|$$

holds in D a. e., then the mapping φ is quasiconformal.

New definition of quasiconformal mapping.

Definition. A homeomorphism $\varphi:D o D'$ belonging to $W^1_{n,\mathrm{loc}}(D)$

and meeting $|D\varphi(x)|^n \le K|J(x,\varphi)|$ for almost all $x \in D$, is called *quasiconformal*.

(New definition of quasiconformality). Let $\varphi: D \to D'$ be a homeomorphism belonging to $W^1_{n,loc}(D)$.

If for some nonnegative number $M \in \mathbb{R}$ the inequality

$$|\operatorname{adj} D\varphi(x)|^{\frac{n}{n-1}} \le M|J(x,\varphi)|$$

holds in D a. e., then the mapping φ is quasiconformal.

Thus, adj $D\varphi(x)=0$ on Z a.e. implies $D\varphi(x)=0$ on Z a.e.

Some preliminaries

A mapping $f: \Omega \to \mathbb{R}^n$ of $W^1_{n,\text{loc}}(\Omega)$, $\Omega \subset \mathbb{R}^n$, $n \geq 2$, is called the mapping with bounded distortion if

$$|Df(x)|^n \le KJ(x,f)$$
 a.e. in $x \in \Omega$,

where K is a constant, $J(x, f) = \det Df(x)$.

Some preliminaries

A mapping $f: \Omega \to \mathbb{R}^n$ of $W^1_{n,\text{loc}}(\Omega)$, $\Omega \subset \mathbb{R}^n$, $n \geq 2$, is called the mapping with bounded distortion if

$$|Df(x)|^n \le KJ(x,f)$$
 a.e. in $x \in \Omega$,

where K is a constant, $J(x, f) = \det Df(x)$.

Analytic functions satisfy this condition under K = 1; n = 2.

Mappings with bounded distortion

New Definition

Motivations for studying more general mappings Poletskiy function and its applications

Some preliminaries

A mapping $f: \Omega \to \mathbb{R}^n$ of $W^1_{n,\text{loc}}(\Omega)$, $\Omega \subset \mathbb{R}^n$, $n \geq 2$, is called the mapping with bounded distortion if

$$|Df(x)|^n \leq KJ(x,f)$$
 a.e. in $x \in \Omega$,

where K is a constant, $J(x, f) = \det Df(x)$.

Analytic functions satisfy this condition under K = 1; n = 2.

In 1967 Yuriy Reshetnyak [6] proved that

every non-constant mapping with bounded distortion is continuous open and discrete.

More general mappings. DEFINITION [7].

Let $\theta: \mathbb{R}^n \to [0, \infty]$ be measurable functions: $0 < \theta < \infty$ a. e.

• A continuous open and discrete mapping $f:\Omega\to\mathbb{R}^n$ is said to be a mapping with bounded θ -weighted (p,q)-distortion, $1\leq q\leq p<\infty$, if:

More general mappings. DEFINITION [7].

Let $\theta : \mathbb{R}^n \to [0, \infty]$ be measurable functions: $0 < \theta < \infty$ a. e.

- A continuous open and discrete mapping $f: \Omega \to \mathbb{R}^n$ is said to be a mapping with bounded θ -weighted (p,q)-distortion, $1 \le q \le p < \infty$, if:
- $f \in W^1_{q,loc}(\Omega)$, $J(x,f) \ge 0$, and f has the finite distortion: Df(x) = 0 a. e. on the set $Z = \{x \in \Omega : J(x,f) = 0\}$;

More general mappings. DEFINITION [7].

Let $\theta : \mathbb{R}^n \to [0, \infty]$ be measurable functions: $0 < \theta < \infty$ a. e.

- A continuous open and discrete mapping $f: \Omega \to \mathbb{R}^n$ is said to be a mapping with bounded θ -weighted (p,q)-distortion, $1 \le q \le p < \infty$, if:
- $f \in W^1_{q,loc}(\Omega)$, $J(x,f) \ge 0$, and f has the finite distortion: Df(x) = 0 a. e. on the set $Z = \{x \in \Omega : J(x,f) = 0\}$;
- the θ -weighted (q, p)-distortion function

$$\Omega \ni x \mapsto K_q^{\theta}(x, f) = \begin{cases} \frac{\theta^{\frac{1}{q}}(x)|Df|(x)}{J(x, f)^{\frac{1}{p}}}, & \text{if } J(x, f) \neq 0, \\ 0 & \text{otherwise}, \end{cases}$$
(3)

belongs to $L_{\kappa}(\Omega)$ where $\frac{1}{\kappa} = \frac{1}{q} - \frac{1}{p}$ $(\kappa = \infty \text{ if } p = q)$.

More general mappings. DEFINITION [7].

Let $\theta: \mathbb{R}^n \to [0, \infty]$ be measurable functions: $0 < \theta < \infty$ a. e.

- A continuous open and discrete mapping $f:\Omega\to\mathbb{R}^n$ is said to be a mapping with bounded θ -weighted (p, q)-distortion, $1 < q < p < \infty$, if:
- $f \in W^1_{a,loc}(\Omega)$, $J(x,f) \ge 0$, and f has the finite distortion: Df(x) = 0 a. e. on the set $Z = \{x \in \Omega : J(x, f) = 0\}$;
- the θ -weighted (q, p)-distortion function

$$\Omega \ni x \mapsto K_q^{\theta}(x, f) = \begin{cases} \frac{\theta^{\frac{1}{q}}(x)|Df|(x)}{J(x, f)^{\frac{1}{p}}}, & \text{if } J(x, f) \neq 0, \\ 0 & \text{otherwise,} \end{cases}$$
(3)

belongs to $L_{\kappa}(\Omega)$ where $\frac{1}{\kappa} = \frac{1}{a} - \frac{1}{p}$ ($\kappa = \infty$ if p = q).

• If $\theta \equiv 1$, q = p = n, f is a m. b. d. If f is homeo then f is a qc mapping. ◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

DEFINITION.

A weighted Sobolev space $L_q^1(\Omega,\omega)$, $1\leq q<\infty$, consists of locally integrable functions $f:\Omega\to\mathbb{R}^n$

having the weak gradient and a finite semi-norm

$$||f| L_q^1(\Omega,\omega)|| = \left(\int\limits_{\Omega} |\nabla f|^q(x)\omega(x) dx\right)^{\frac{1}{q}}.$$

DEFINITION.

A weighted Sobolev space $L_q^1(\Omega,\omega)$, $1\leq q<\infty$, consists of locally integrable functions $f:\Omega\to\mathbb{R}^n$

having the weak gradient and a finite semi-norm

$$||f| L_q^1(\Omega,\omega)|| = \left(\int\limits_{\Omega} |\nabla f|^q(x)\omega(x) dx\right)^{\frac{1}{q}}.$$

All weighted functions are assumed to be locally integrable.

Analytic motivation

Theorem 3 [8]. A sense-preserving homeomorphism $f:(\Omega,\theta)\to\Omega'$ induces a bounded operator

 $f^*: L^1_p(\Omega') \cap W^1_{\infty, \text{loc}}(\Omega') \to L^1_q(\Omega, \theta), \ 1 \leq q \leq p < \infty$, of weighted Sobolev spaces by the rule $f^*(g) = g \circ f$ iff f has θ -weighted (p, q)-distortion.

Analytic motivation

Theorem 3 [8]. A sense-preserving homeomorphism $f:(\Omega,\theta)\to\Omega'$ induces a bounded operator

 $f^*: L^1_p(\Omega') \cap W^1_{\infty, \text{loc}}(\Omega') \to L^1_q(\Omega, \theta), \ 1 \leq q \leq p < \infty$, of weighted Sobolev spaces by the rule $f^*(g) = g \circ f$ iff f has θ -weighted (p, q)-distortion.

COROLLARY 1. Let $\theta \in A_q$. A sense-preserving homeomorphism

 $f:(\Omega,\theta) \to \Omega'$ induces a b. operator $f^*: L^1_p(\Omega') \to L^1_q(\Omega,\theta)$, $1 \le q \le p < \infty$, of weighted Sobolev spaces by the rule $f^*(g) = g \circ f$ iff f has θ -weighted (p,q)-distortion.

Analytic motivation

Theorem 3 [8]. A sense-preserving homeomorphism $f:(\Omega,\theta)\to\Omega'$ induces a bounded operator

 $f^*: L^1_p(\Omega') \cap W^1_{\infty, \text{loc}}(\Omega') \to L^1_q(\Omega, \theta), \ 1 \leq q \leq p < \infty$, of weighted Sobolev spaces by the rule $f^*(g) = g \circ f$ iff f has θ -weighted (p, q)-distortion.

COROLLARY 1. Let $\theta \in A_q$. A sense-preserving homeomorphism

 $f:(\Omega,\theta)\to\Omega'$ induces a b. operator $f^*:L^1_p(\Omega')\to L^1_q(\Omega,\theta)$, $1\leq q\leq p<\infty$, of weighted Sobolev spaces by the rule $f^*(g)=g\circ f$ iff f has θ -weighted (p,q)-distortion.

Moreover,
$$\alpha_{p,q} \| K_q^{\theta}(\cdot, f) \mid L_{\kappa}(\Omega') \| \leq \| f^* \| \leq \| K_q^{\theta}(\cdot, f) \mid L_{\kappa}(\Omega') \|.$$

Analytic motivation

Theorem 3 [8]. A sense-preserving homeomorphism $f:(\Omega,\theta)\to\Omega'$ induces a bounded operator

 $f^*: L^1_p(\Omega') \cap W^1_{\infty, loc}(\Omega') \to L^1_q(\Omega, \theta), \ 1 \leq q \leq p < \infty$, of weighted Sobolev spaces by the rule $f^*(g) = g \circ f$ iff f has θ -weighted (p, q)-distortion.

COROLLARY 1. Let $\theta \in A_q$. A sense-preserving homeomorphism

$$f:(\Omega,\theta) \to \Omega'$$
 induces a b. operator $f^*:L^1_p(\Omega') \to L^1_q(\Omega,\theta)$, $1 \le q \le p < \infty$, of weighted Sobolev spaces by the rule $f^*(g) = g \circ f$ iff f has θ -weighted (p,q) -distortion.

Moreover,
$$\alpha_{p,q} \| K_q^{\theta}(\cdot, f) \mid L_{\kappa}(\Omega') \| \leq \| f^* \| \leq \| K_q^{\theta}(\cdot, f) \mid L_{\kappa}(\Omega') \|.$$

RFMARK: Under p = a = n $\theta = 1$ we obtain just ac mappings

Geometric motivation

A Riemannian manifold \mathbb{M} has the bounded geometry if there exists $\varepsilon > 0$ such that every $B(x, \varepsilon) \subset \mathbb{M}$ is diffeomorphic to $B(0,1) \subset \mathbb{R}^n$ with Lipschitz constant bounded uniformly.

Theorem 4 (Pierre Pansu proved the result when f is a diffeo.) Let \mathbb{M} and \mathbb{N} be Riemannian manifolds with bounded geometry, and assume that \mathbb{N} satisfies an isoperimetric inequality of order d > n:

$$Area(\partial\Omega)^{d/(d-1)} \ge const. \ Vol(\Omega)$$

for all smooth compact domain $\Omega\subset\mathbb{N}$ of volume ≥ 1 . If $d\frac{n-1}{d-1}< s< n$, then every homeomorphism $f\in W^{1,1}_{loc}(\mathbb{M},\mathbb{N})$ with bounded (s,s)-distortion is a rough quasi-isometry.

Geometric motivation

A Riemannian manifold \mathbb{M} has the bounded geometry if there exists $\varepsilon > 0$ such that every $B(x, \varepsilon) \subset \mathbb{M}$ is diffeomorphic to $B(0,1) \subset \mathbb{R}^n$ with Lipschitz constant bounded uniformly.

Theorem 4 (Pierre Pansu proved the result when f is a diffeo.) Let \mathbb{M} and \mathbb{N} be Riemannian manifolds with bounded geometry, and assume that \mathbb{N} satisfies an isoperimetric inequality of order d > n:

$$Area(\partial\Omega)^{d/(d-1)} \ge const. Vol(\Omega)$$

for all smooth compact domain $\Omega \subset \mathbb{N}$ of volume ≥ 1 . If $d\frac{n-1}{d-1} < s < n$, then every homeomorphism $f \in W^{1,1}_{loc}(\mathbb{M},\mathbb{N})$ with bounded (s,s)-distortion is a rough quasi-isometry.

The last means
$$0 < \alpha^{-1} \le \frac{d_{\mathbb{N}}(f(x), f(y))}{d_{\mathbb{M}}(x, y)} \le \alpha$$
 for all $x, y \in \mathbb{M}$ with $d_{\mathbb{M}}(x, y) \ge 1$.

Poletskiy function and its properties

DEFINITION. Let $f: \Omega \to \mathbb{R}^n$ be a mapping with bounded θ -weighted (p,q)-distortion, $D \subseteq \Omega$ be a normal domain: $f(\partial D) = \partial f(D)$. On V = f(D) define the Poletskiy function

$$V \ni y \mapsto g_D(y) = \sum_{x \in f^{-1}(y) \cap D} i(x, f)x.$$

Poletskiy function and its properties

DEFINITION. Let $f: \Omega \to \mathbb{R}^n$ be a mapping with bounded θ -weighted (p,q)-distortion, $D \subseteq \Omega$ be a normal domain: $f(\partial D) = \partial f(D)$. On V = f(D) define the Poletskiy function

$$V \ni y \mapsto g_D(y) = \sum_{x \in f^{-1}(y) \cap D} i(x, f)x.$$

Theorem 5 [9]. Let q > n - 1. The function g_D has the following properties:

- 1) supp $g_D = f(\overline{D})$ is a compact set;
- 2) g_D is continuous;
- 3) $g_D \in ACL(V)$;
- 4) $Dg_D(y) = 0$ a. e. on $Z = \{y \in V : \det Dg_D(y) = 0\}$;
- 5) $f(B_f \cap D) \subset Z$ where B_f is the branch set.

Push-forward functions

DEFINITION. Let $f: \Omega \to \mathbb{R}^n$ be a mapping with bounded θ -weighted (p,q)-distortion, $D \subseteq \Omega$ be a normal domain, $f(\partial D) = \partial f(D), \ u \in C_0^1(D)$. Define $v = f_*u : f(\Omega) \to \mathbb{R}$ as

$$f(\Omega) \ni y \mapsto v(y) = \begin{cases} \sum\limits_{x \in f^{-1}(y)} i(x, f)u(x), & y \in f(\operatorname{supp} u), \\ 0, & y \notin f(\operatorname{supp} u). \end{cases}$$

Push-forward functions

DEFINITION. Let $f: \Omega \to \mathbb{R}^n$ be a mapping with bounded θ -weighted (p,q)-distortion, $D \subseteq \Omega$ be a normal domain, $f(\partial D) = \partial f(D), \ u \in C_0^1(D)$. Define $v = f_*u : f(\Omega) \to \mathbb{R}$ as

$$f(\Omega) \ni y \mapsto v(y) = \begin{cases} \sum\limits_{x \in f^{-1}(y)} i(x, f)u(x), & y \in f(\operatorname{supp} u), \\ 0, & y \notin f(\operatorname{supp} u). \end{cases}$$

Theorem 6 [7]. Let q > n - 1. The function v has the following properties:

- 1) supp v = f(supp u) is a compact set;
- 2) v is continuous, $v \in ACL(f(D))$;
- 3) Dv(y) = 0 a. e. on $Z = \{ y \in f(\Omega) : \det Dg_D(y) = 0 \};$
- 4) $f(B_f \cap D) \subset Z$.

Push-forward functions and estimates for them

DEFINITION. Let $f: \Omega \to \mathbb{R}^n$ be a mapping with bounded θ -weighted (p,q)-distortion, $D \subseteq \Omega$ be a normal domain, $f(\partial D) = \partial f(D), \ u \in C_0^1(\Omega)$. Define $w: f(\Omega) \to \mathbb{R}$ as

$$f(\Omega) \ni y \mapsto w(y) = \begin{cases} \sup_{x \in f^{-1}(y)} u(x), & y \in f(\operatorname{supp} u), \\ 0, & y \notin f(\operatorname{supp} u). \end{cases}$$

Push-forward functions and estimates for them

DEFINITION. Let $f: \Omega \to \mathbb{R}^n$ be a mapping with bounded θ -weighted (p,q)-distortion, $D \subseteq \Omega$ be a normal domain, $f(\partial D) = \partial f(D), \ u \in C_0^1(\Omega)$. Define $w: f(\Omega) \to \mathbb{R}$ as

$$f(\Omega) \ni y \mapsto w(y) = \begin{cases} \sup_{x \in f^{-1}(y)} u(x), & y \in f(\text{supp } u), \\ 0, & y \notin f(\text{supp } u). \end{cases}$$

Theorem 7 [7]. Let q > n - 1. The function w has the following properties:

- 1) supp w = f(supp u) is a compact set;
- 2) w is continuous, $w \in ACL(f(D))$;
- 3) Dw(y) = 0 a. e. on $Z = \{ y \in f(\Omega) : \det Dg_D(y) = 0 \};$
- 4) $f(B_f \cap D) \subset Z$.

Theorem 8 [7]. Let $f: \Omega \to \mathbb{R}^n$ be a mapping with bounded θ -weighted (p,q)-distortion. For the push-forward function

1) $v = f_*u : f(\Omega) \to \mathbb{R}$ and a domain $D \subset \Omega$ such that supp $u \in D$, the following estimate holds:

$$||f_*u||L_s^1(f(D))|| \le N(f,D)^{\frac{s-1}{s}}(K_{q,p}^{\theta}(f;D))^{n-1}||u||L_r^1(D,\omega)||,$$

where
$$N(f,D) = \sup_{y \in \mathbb{R}^n} \#\{f^{-1}(y) \cap D\};$$

Theorem 8 [7]. Let $f: \Omega \to \mathbb{R}^n$ be a mapping with bounded θ -weighted (p,q)-distortion. For the push-forward function

1) $v = f_*u : f(\Omega) \to \mathbb{R}$ and a domain $D \subset \Omega$ such that supp $u \in D$, the following estimate holds:

$$\|f_*u\mid L^1_s\big(f(D)\big)\|\leq N(f,D)^{\frac{s-1}{s}}\big(K^\theta_{q,p}(f;D)\big)^{n-1}\|u\mid L^1_r(D,\omega)\|,$$

where
$$N(f,D) = \sup_{y \in \mathbb{R}^n} \#\{f^{-1}(y) \cap D\};$$

2) for $w: f(\Omega) \to \mathbb{R}$ and a domain $D \subseteq \Omega$ such that supp $u \subseteq D$, the following estimate holds:

$$||w| L_s^1(f(D))|| \le K_{q,p}^{\theta}(f;\Omega)^{n-1}||u| L_r^1(D,\omega)||$$

holds where
$$s = \frac{p}{p - (n - 1)}$$
, $r = \frac{q}{q - (n - 1)}$, $\omega(x) = \theta^{-\frac{n - 1}{q - (n - 1)}}(x) \in L_1$.

Estimates for capacity:

Definition of capacity. Let $F_0, F_1 \subset \overline{D}$ be closed sets where $D \subset \mathbb{R}^n$ be an open set. The value

$$\operatorname{cap}_{p}^{\omega}(E) = \operatorname{cap}_{p}^{\omega}(F_{0}, F_{1}; D) = \inf \int_{D} |\nabla u|^{p}(x)\omega(x) dx$$

where infimum is taken over all functions $u \in C(\overline{D}) \cap W^1_{\infty,\text{loc}}(D) \cap L^1_p(D,\omega)$ such that $u \geq 1$ on F_1 , u=0 on F_0 , is called ω -weighted p-capacity of the condenser $E=(F_0,F_1;D)$.

Estimates for capacity:

Definition of capacity. Let $F_0, F_1 \subset \overline{D}$ be closed sets where $D \subset \mathbb{R}^n$ be an open set. The value

$$\operatorname{\mathsf{cap}}_p^\omega(E) = \operatorname{\mathsf{cap}}_p^\omega(F_0, F_1; D) = \inf \int\limits_D |\nabla u|^p(x)\omega(x) \, dx$$

where infimum is taken over all functions $u \in C(\overline{D}) \cap W^1_{\infty, \text{loc}}(D) \cap L^1_p(D, \omega)$ such that $u \geq 1$ on F_1 , u = 0 on F_0 , is called ω -weighted p-capacity of the condenser $E = (F_0, F_1; D)$.

If U is an open set, $C \subset U$ is a compact, then the condenser $E = (\partial U, C; U)$ will be denoted by a symbol E = (U, C).

Estimates for capacity

Corollary 2. Let $f: \Omega \to \mathbb{R}^n$ be a mapping with bounded

 $(\theta,1)$ -weighted (p,q)-distortion, $n-1< q \leq p < \infty$. If E=(A,C) is a condenser in Ω such that $\overline{A}\subset \Omega$, C is a compact in A and $N(f,A)<\infty$, then

$$\left(\mathsf{cap}_s\,f(E)\right)^{1/s} \leq \frac{(K_{q,p}^{\theta,1}(f;\Omega))^{n-1}(N(f,A))^{(s-1)/s}}{M(f,C)} \big(\mathsf{cap}_r^\omega\,E)\big)^{1/r},$$

where
$$s = \frac{p}{p - (n - 1)}$$
, $r = \frac{q}{q - (n - 1)}$ and
$$M(f, C) = \inf_{x \in f(C)} \sum_{z \in f^{-1}(x) \cap C} i(z, f), \ \omega(x) = \theta^{-\frac{n - 1}{q - (n - 1)}}(x).$$

Estimates for capacity

Corollary 3. Let $f: \Omega \to \mathbb{R}^n$ be a mapping with bounded

 θ -weighted (p,q)-distortion, $n-1 < q \le p < \infty$. If E = (A,C) is a condenser in Ω such that $\overline{A} \subset \Omega$, C is a compact in A, then

$$\left(\operatorname{\mathsf{cap}}_s f(E)\right)^{1/s} \leq K_{p,q}^{\theta}(f;\Omega)^{n-1} \left(\operatorname{\mathsf{cap}}_r^{\omega} E\right)^{1/r}$$

where
$$r = \frac{q}{q - (n - 1)}$$
, $s = \frac{p}{p - (n - 1)}$ and $\omega(x) = \theta^{-\frac{n - 1}{q - (n - 1)}}(x)$.

Properties of mappings with θ -weighted (p, q)-distortion, $n-1 < q < p < \infty$.

Theorem 9 (Liouville type theorem) [7]. Let $f : \Omega \to \mathbb{R}^n$ be a mapping with bounded θ -weighted (p,q)-distortion,

 $n-1 < q \le p < \infty$. If $E_k = (B_k, C)$ is a condenser in \mathbb{R}^n such that $\mathsf{cap}_r^\omega(E_k) > 0$ and $\mathsf{cap}_r^\omega(E_k) \to 0$ as $k \to \infty$ then

$$\mathsf{cap}_sig(\mathbb{R}^n\setminus f(\mathbb{R}^n);\, W^1_s(\mathbb{R}^n)ig)=0$$

where
$$r = \frac{q}{q - (n - 1)}$$
, $s = \frac{p}{p - (n - 1)}$ and $\omega(x) = \theta^{-\frac{n - 1}{q - (n - 1)}}(x)$.

Properties of mappings with θ -weighted (p, q)-distortion, $n-1 < q \le p < \infty$.

Theorem 9 (Liouville type theorem) [7]. Let $f : \Omega \to \mathbb{R}^n$ be a mapping with bounded θ -weighted (p,q)-distortion,

 $n-1 < q \le p < \infty$. If $E_k = (B_k, C)$ is a condenser in \mathbb{R}^n such that $\operatorname{cap}_r^{\omega}(E_k) > 0$ and $\operatorname{cap}_r^{\omega}(E_k) \to 0$ as $k \to \infty$ then

$$\operatorname{\mathsf{cap}}_{s} ig(\mathbb{R}^{n} \setminus f(\mathbb{R}^{n}); \, W^{1}_{s}(\mathbb{R}^{n}) ig) = 0$$

where
$$r = \frac{q}{q - (n - 1)}$$
, $s = \frac{p}{p - (n - 1)}$ and $\omega(x) = \theta^{-\frac{n - 1}{q - (n - 1)}}(x)$.

Corollary 4.

Under conditions of previous theorem $f(\mathbb{R}^n) = \mathbb{R}^n$ if n-1 < q < p < n.

Properties of mappings with θ -weighted (p, q)-distortion, $n-1 < q < p < \infty$.

Theorem 10 (Removability) [7]. Let $f: \Omega \setminus F \to \mathbb{R}^n$ be a mapping with bounded θ -weighted (p,q)-distortion, $n \leq q \leq p$,

and $F \subset \Omega$ be a closed set such that $\operatorname{cap}^{\omega}(F; W^1_r(\mathbb{R}^n)) = 0$, $s = \frac{p}{p - (n - 1)}, \ r = \frac{q}{q - (n - 1)}, \ \omega(x) = \theta^{-\frac{n - 1}{q - (n - 1)}}(x), \ \omega \in A_r.$ Then

- 1) at $n < q \le p < \frac{(n-1)^2}{(n-2)}$ the mapping f can be extended to a continuous mapping $\widetilde{f}: \Omega \to \mathbb{R}^n$;
- 2) at $n=q\leq p<rac{(n-1)^2}{(n-2)}$ and ${\sf cap}(\mathbb{R}^n\setminus f(\Omega\setminus F);\, W^1_n(\mathbb{R}^n))>0$ the mapping f is extended to a continuous mapping $\widetilde{f}: \Omega \to \overline{\mathbb{R}}^n$.

Lavrentiev — Zorich Theorem for mapping with bounded θ -weighted (n, n)-distortion.

Now $f:\Omega\to\mathbb{R}^n$ belongs to $W^1_{n,\mathrm{loc}}(\Omega)$, has the finite distortion and meets

$$\theta(x)|Df|^n(x) \le J(x,f)$$
 for almost all $x \in \Omega$. (4)

Theorem 10. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a locally homeomorphic mapping meeting condition (4).

If $E_k=(B_k,C)$ is a condenser in \mathbb{R}^n such that $\operatorname{cap}_r^\omega(E_k)>0$ and $\operatorname{cap}_r^\omega(E_k)\to 0$ as $k\to\infty$ where $\omega(x)=\theta^{1-n}(x)$, then $f:\mathbb{R}^n\to\mathbb{R}^n$ is an homeomorphism on \mathbb{R}^n .

Applications: Classification of manifolds

Let \mathbb{M} and \mathbb{N} be Riemannian manifolds of topological dimension $n \geq 2$, θ be a weighted function on \mathbb{M} and $n-1 < q \leq p < \infty$.

Applications: Classification of manifolds

Let \mathbb{M} and \mathbb{N} be Riemannian manifolds of topological dimension $n \geq 2$, θ be a weighted function on \mathbb{M} and $n-1 < q \leq p < \infty$.

A Riemannian manifold M is said to be (ω, r) -parabolic

if $\operatorname{\mathsf{cap}}_{\omega,r}(D,\mathbb{M})=0$ for any compact set $D\subset\mathbb{M}$ where

$$\omega(x) = \theta^{-\frac{n-1}{q-(n-1)}}(x), \ r = \frac{q}{q-(n-1)}, \ q > n-1.$$

Applications: Classification of manifolds

Let \mathbb{M} and \mathbb{N} be Riemannian manifolds of topological dimension $n \geq 2$, θ be a weighted function on \mathbb{M} and $n-1 < q \leq p < \infty$.

A Riemannian manifold \mathbb{M} is said to be (ω, r) -parabolic

if $\operatorname{\mathsf{cap}}_{\omega,r}(D,\mathbb{M})=0$ for any compact set $D\subset\mathbb{M}$ where

$$\omega(x) = \theta^{-\frac{n-1}{q-(n-1)}}(x), \ r = \frac{q}{q-(n-1)}, \ q > n-1.$$

Theorem 11 [7]. Let $f : \mathbb{M} \to \mathbb{N}$ be a mapping with bounded θ -weighted (p,q)-distortion, $n-1 < q \le p < \infty$.

Then if \mathbb{M} is (ω, r) -parabolic then \mathbb{N} is s-parabolic where

$$r = \frac{q}{q - (n - 1)}, \ s = \frac{p}{p - (n - 1)}, \ \omega(x) = \theta^{-\frac{n - 1}{q - (n - 1)}}(x).$$

Non-linear elasticity theory, J. Ball approach [10]:

For hyperelastic materials a typical boundary-value problem takes the form of finding a deformation $\psi: \Omega \to \mathbb{R}^n$ making the integral

$$I(\varphi) = \int_{\Omega} W(x, D\psi(x)) dx$$

stationary on a suitable class A_B of mappings.

Non-linear elasticity theory, J. Ball approach [10]:

For hyperelastic materials a typical boundary-value problem takes the form of finding a deformation $\psi: \Omega \to \mathbb{R}^n$ making the integral

$$I(\varphi) = \int_{\Omega} W(x, D\psi(x)) dx$$

stationary on a suitable class A_B of mappings.

$$\mathcal{A}_B = \{ \varphi \in W^1_p(\Omega), \ I(\varphi) < \infty, \ \varphi|_{\Gamma} = \overline{\varphi}|_{\Gamma} \text{ a. e. on } \Gamma = \partial\Omega, \ J(x,\varphi) > 0 \text{ a. e. in } \Omega \}$$

Non-linear elasticity theory, J. Ball approach [10]:

For hyperelastic materials a typical boundary-value problem takes the form of finding a deformation $\psi:\Omega\to\mathbb{R}^n$ making the integral

$$I(\varphi) = \int_{\Omega} W(x, D\psi(x)) dx$$

stationary on a suitable class A_B of mappings.

$$\mathcal{A}_B = \{ \varphi \in W^1_p(\Omega), \ I(\varphi) < \infty, \ \varphi|_{\Gamma} = \overline{\varphi}|_{\Gamma} \ \text{a. e. on } \Gamma = \partial \Omega, \\ J(x,\varphi) > 0 \ \text{a. e. in } \Omega \}$$

The integrand W(x,F) is the stored-energy function. It is polyconvex and meets a coercitive estimate: if $\det F>0$ then $W(x,F)\geq \alpha(||F||^p+||\operatorname{adj} F||^q+(\det F)^r+(\det F)^{-s})+g(x)$ for some $\alpha>0,\ p>n,\ q>n,\ r>1,\ s>\frac{(n-1)q}{a-n}$ and $g\in L_1(\Omega)$.

A new class of admissible deformations

Let $\overline{\varphi}: \Omega \to \Omega'$, $\overline{\varphi} \in W_n^1(\Omega)$, $M \in L_1(\Omega)$. Consider a new class of admissible deformations:

$$\begin{split} \mathcal{A} &= \{\varphi \in W^1_n(\Omega) \text{ has finite distortion, } J(x,\varphi) \in L_r(\Omega), \\ &\frac{|D\varphi(x)|}{J(x,\varphi)^{1/n}} < M(x) \in L_{ns}(\Omega), \\ s &> n-1, \ \varphi|_{\Gamma} = \overline{\varphi}|_{\Gamma} \text{ a. e. on } \Gamma, \ J(x,\varphi) \geq 0 \text{ a. e. in } \Omega \} \end{split}$$

Polyconvexity and coercitivity

 $\mathbb{M}^n_{>0}$ is a set of $(n \times n)$ -matrixes with nonnegative determinant.

Polyconvexity: A function $W: \Omega \times \mathbb{M}^n \to \mathbb{R}$ is called

polyconvex if there exists a convex function $G(x,\cdot): \mathbb{M}^n \times \mathbb{M}^n \times \mathbb{R}_+ \to \mathbb{R}$ such that for all $F \in \mathbb{M}^n_{\geq 0}$ the equality

$$G(x, F, \operatorname{adj} F, \operatorname{det} F) = W(x, F)$$
 holds.

Polyconvexity and coercitivity

 $\mathbb{M}_{>0}^n$ is a set of $(n \times n)$ -matrixes with nonnegative determinant.

Polyconvexity: A function $W: \Omega \times \mathbb{M}^n \to \mathbb{R}$ is called

polyconvex if there exists a convex function $G(x,\cdot): \mathbb{M}^n \times \mathbb{M}^n \times \mathbb{R}_+ \to \mathbb{R}$ such that for all $F \in \mathbb{M}^n_{\geq 0}$ the equality

$$G(x, F, \operatorname{adj} F, \operatorname{det} F) = W(x, F)$$
 holds.

Coercitivity: There exist constants $\alpha > 0$, r > 1 and

a function $g \in L_1(\Omega)$ such that

$$W(x,F) \ge \alpha(\|F\|^n + (\det F)^r) + g(x)$$

for almost all $x \in \Omega$ and for all $F \in \mathbb{M}_{>0}^n$.

The main theorem

Theorem 12 [11]. Let Ω and Ω' be bounded domains with Lipschitz boundaries and

- 1) the stored-energy function W(x, F) be polyconvex and coercitive,
- 2) $\overline{\varphi}:\overline{\Omega}\to\overline{\Omega'}$ be a homeomorphism,
- 3) the set ${\mathcal A}$ be nonempty and $\inf_{\psi\in{\mathcal A}}I(\psi)<\infty.$

Then there exists a homeomorphism $\varphi \in \mathcal{A}$ such that

$$I(\varphi) = \inf_{\psi \in \mathcal{A}} I(\psi).$$

Example:

$F \in \mathbb{M}^3_{\geq 0}$

$$W(F) = \alpha \operatorname{trace}(F^T F)^{\frac{3}{2}} + c(\det F)^r, \quad r > 1.$$

W(F) meets the coercitive condition

$$W(F) \ge \alpha \|F\|^3 + c(\det F)^r$$

but it does not meet the coercitive condition by Ball

$$W(x, F) \ge \alpha (\|F\|^p + \|\operatorname{adj} F\|^q + (\det F)^r) + g(x)$$

for some p, q > 3 and r > 1.

References:

- 1) Vodop'yanov S. K. *On Regularity of Mappings Inverse to Sobolev Mappings* // Doklady Mathematics, 2008, Vol. 78, № 3, P. 891–895.
- 2) Vodop'yanov S. K. *Mappings of Finite Codistortion and Sobolev Classes of Functions* // Doklady Mathematics, 2011, Vol. 84, № 2, P. 640–644.
- 3) Vodop'yanov S. K. *Regularity of mappings inverse to Sobolev mappings* // Sbornik: Mathematics (2012) **203**:10. P. 1383–1410.
- 4) Koskela P. Regularity of the inverse of a Sobolev homeomorphism // Proceedings of the International Congress of Mathematicians, vol. III: Invited lectures (Hyderabad, India 2010), World Scientific, Hackensack, NJ; Hindustan Book Agency, New Dehli 2010, pp. 1411–1416.
- 5) Csörnyei M., Hencl S., Malý Y. *Homeomorphisms in the Sobolev space W*^{1,n-1} // J. Reine Angew. Math. **644** (2010), P. 221=235

References:

- 6) Решетняк Ю. Г. Пространственные отображения с ограниченным искажением. Н.: Наука, 1982.
- 7) Vodopyanov S. K. On the Regularity of the Poletskii Function under Weak Analytic Assumptions on the Given Mapping, *Doklady Mathematics*, 89, № 2 (2014), 157–161.
- 8) Vodopyanov S. K., Ukhlov A. O. Superposition Operators in Sobolev Spaces, *Russian Mathematics (Izv. VUZ)*. 2002. V. 46, № 10. P. 9–31.
- 9) Baykin A. N., Vodopyanov S. K. Capacity estimates, Liouville's theorem, and singularity removal for mappings with bounded (*p*, *q*)-distortion, *Siberian Math. J.* 56, № 2 (2015), 237–261.

References:

- 10) J. M. Ball, "Convexity conditions and existence theorems in nonlinear elasticity", *Arch. Ration. Mech. and Analys*, V. 63, 337–403 (1977).
- 11) С. К. Водопьянов, А. О. Молчанова, "Вариационные задачи нелинейной теории упругости в некоторых классах отображений с конечным искажением", Докл. АН, (2015) (in publication).