Lyapunov Matrices for Time-Delay Systems

Vladimir L. Kharitonov

Faculty of Applied Mathematics and Processes of Control Saint-Petersburg State University

Optimization and Applications in Control and Data Science May 13-15, 2015 Moscow, Russia

Outline

- Preliminaries
- 2 Lyapunov-Krasovskii approach
- 3 Lyapunov matrices: Basic properties
- 4 Lyapunov matrices: New definition
- **5** Complete type functionals

Preliminaries

System description

In this lecture we consider a system of the form

$$\frac{dx(t)}{dt} = A_0x(t) + A_1x(t-h). \tag{1}$$

Here A_0 and A_1 are real $n \times n$ matrices, and h is a non-negative time delay.

Initial value problem

The initial value problem for system (1) is stated as follows: Given an initial time instant t = 0, and an initial function

$$\varphi: [-h, 0] \to \mathbb{R}^n,$$

find a solution of the system that satisfies the condition:

$$x(\theta) = \varphi(\theta), \quad \theta \in [-h, 0].$$

In this lecture we assume that initial functions belong to the space of piece-wise continuous functions

$$PC\left([-h,0],R^n\right)$$
.

Norms

- The Euclidean/Hermitian norm is used for vectors
- The corresponding induced spectral norm is used for matrices

$$||A|| = \max_{||x||=1} ||Ax||$$

• The space

$$PC\left([-h,0],R^n\right)$$

is equipped with the uniform norm,

$$\|\varphi\|_h = \sup_{\theta \in [-h,0]} \|\varphi(\theta)\|.$$

State concept

The state of system (1) at a time instant t is defined as the restriction of the solution on the segment [t-h,t]:

$$x_t: \theta \to x(t+\theta), \quad \theta \in [-h, 0].$$

In the case when the initial function φ should be indicated explicitly we use notations $x(t,\varphi)$ and $x_t(\varphi)$.

Fundamental matrix

Definition 1.2

It is said that $n \times n$ matrix K(t) is the fundamental matrix of system (1) if it satisfies the matrix equation

$$\frac{d}{dt}K(t) = K(t)A_0 + K(t-h)A_1, \quad t \ge 0,$$

and $K(t) = 0_{n \times n}$, for t < 0, K(0) = I. Here I is the identity $n \times n$ matrix.

Cauchy formula

Theorem 1.2

Given an initial function $\varphi \in PC([-h,0],R^n)$, then the following equality holds

$$x(t,\varphi) = K(t)\varphi(0) + \int_{-h}^{0} K(t-\theta-h)A_1\varphi(\theta)d\theta, \quad t \ge 0.$$

This expression for $x(t,\varphi)$ is known as Cauchy formula.

Exponential stability

Definition 2.2

System (1) is said to be exponentially stable if there exist $\gamma \geq 1$ and $\sigma > 0$, such that any solution $x(t, \varphi)$ of the system satisfies the inequality

$$||x(t,\varphi)|| \le \gamma e^{-\sigma t} ||\varphi||_h, \quad t \ge 0.$$

Krasovskii Theorem

Theorem 2.2

System (1) is exponentially stable if there exists a functional

$$v: PC([-h, 0], R^n) \to R,$$

such that the following conditions hold

• For some positive α_1 , α_2 the functional admits a lower and an upper bounds of the form

$$\alpha_1 \|\varphi(0)\|^2 \le v(\varphi) \le \alpha_2 \|\varphi\|_h^2, \quad \varphi \in PC([-h, 0], \mathbb{R}^n).$$

• For some $\beta > 0$ the inequality

$$\frac{d}{dt}v(x_t) \le -\beta \|x(t)\|^2, \quad t \ge 0,$$

holds along the solutions of the system.

Lyapunov-Krasovskii approach

We illustrate the scheme with the functional

$$v(\varphi) = \varphi^{T}(0)P\varphi(0) + \int_{-h}^{0} \varphi^{T}(\theta)Q\varphi(\theta)d\theta.$$

If matrices P and Q are positive definite, then the first condition of the Krasovskii Theorem is satisfies with

$$\alpha_1 = \lambda_{\min}(P),$$

 $\alpha_2 = \lambda_{\max}(P) + h\lambda_{\max}(Q).$

The value of the functional along a solution x(t) of system (1)

$$v(x_t) = x^T(t)Px(t) + \int_{-h}^{0} x^T(t+\theta)Qx(t+\theta)d\theta.$$

Lyapunov-Krasovskii approach

The time derivative,

$$\frac{dv(x_t)}{dt} = 2x^T(t)P[A_0x(t) + A_1x(t-h)] + x^T(t)Qx(t) - x^T(t-h)Qx(t-h),$$

can be presented in the form

$$\frac{dv(x_t)}{dt} = \left(x^T(t), x^T(t-h)\right) \left(\begin{array}{cc} A_0^T P + P A_0 + Q & P A_1 \\ A_1^T P & -Q \end{array}\right) \left(\begin{array}{c} x(t) \\ x(t-h) \end{array}\right).$$

Lyapunov-Krasovskii approach

The second condition of Krasovskii Theorem is fulfilled when matrix

$$\begin{pmatrix} A_0^T P + P A_0 + Q & P A_1 \\ A_1^T P & -Q \end{pmatrix}$$

is negative definite.

Delay free case

Theorem 3.2

System

$$\frac{dx}{dt} = Ax.$$

is exponentially stable if and only if there exists a Lyapunov function v(x) that satisfies the following conditions

• For some positive α_1 , α_2 the function admits a lower and an upper bounds of the form

$$\alpha_1 \|x\|^2 \le v(x) \le \alpha_2 \|x\|^2, \quad x \in \mathbb{R}^n;$$

• For some $\beta > 0$ the inequality

$$\frac{d}{dt}v(x(t)) \le -\beta \|x(t)\|^2, \quad t \ge 0,$$

holds along the solutions of the system.

Problem statement

Problem: Let system (1) be exponentially stable, given a quadratic form

$$w(x) = x^T W x,$$

find a functional

$$v_0(\varphi),$$

defined on $PC([-h, 0], \mathbb{R}^n)$, such that along the solutions of the system the following equality holds

$$\frac{d}{dt}v_0(x_t) = -x^T(t)Wx(t), \quad t \ge 0.$$

Computation of $v_0(\varphi)$

Assume that system (1) is exponentially stable, then

$$v_0(\varphi) = \int_0^\infty x^T(t, \varphi) W x(t, \varphi) dt.$$

Functional $v_0(\varphi)$

Simple transformations allow to show that functional $v_0(\varphi)$ can be written as

$$v_{0}(\varphi) = \varphi^{T}(0)U(0)\varphi(0)$$

$$+2\varphi^{T}(0)\int_{-h}^{0}U(-h-\theta)A_{1}\varphi(\theta)d\theta$$

$$+\int_{-h}^{0}\varphi^{T}(\theta_{1})A_{1}^{T}\left[\int_{-h}^{0}U(\theta_{1}-\theta_{2})A_{1}\varphi(\theta_{2})d\theta_{2}\right]d\theta_{1}.$$

$$(2)$$

Lyapunov matrix: first definition

Definition 3.2

Matrix

$$U(\tau) = \int_{0}^{\infty} K^{T}(t)WK(t+\tau)dt, \tag{3}$$

is named Lyapunov matrix of system (1) associated with matrix W.

How to compute matrix $U(\tau)$?

Delay-free case

Time-delay case

$$V = \int_{0}^{\infty} (e^{At})^{T} W e^{At} dt \qquad U(\tau) = \int_{0}^{\infty} K^{T}(t) W K(t) dt$$
$$A^{T} V + V A = -W \qquad ?$$

Dynamic property

Lemma 1.2

Lyapunov matrix $U(\tau)$ satisfies the dynamic property

$$\frac{d}{d\tau}U(\tau) = U(\tau)A_0 + U(\tau - h)A_1, \quad \tau \ge 0.$$

Symmetry property

Lemma 2.2

Lyapunov matrix satisfies the symmetry property

$$U(-\tau) = U^T(\tau), \quad \tau \ge 0.$$

Algebraic property

Lemma 3.2

Lyapunov matrix satisfies the algebraic property

$$U(0)A_0 + U(-h)A_1 + A_0^T U(0) + A_1^T U(h) = -W.$$

Algebraic property

The symmetry property indicates that the first derivative of the Lyapunov matrix suffers discontinuity at point $\tau = 0$.

Lemma 4.2

The algebraic property can be written in the form

$$U'(+0) - U'(-0) = -W.$$

Here U'(+0) and U'(-0) stand for the right hand side, and the left hand side derivatives of matrix $U(\tau)$ at $\tau = 0$, respectively.

Lyapunov matrices: new definition

There are two serious limitations, associated with the definition of Lyapunov matrices by means of improper integral (3):

- The first one is that this definition is applicable to the exponentially stable systems, only.
- The second one is that the definition is of little help from the computational point of view. Indeed, it demands a preliminary computation of the fundamental matrix K(t), for $t \in [0, \infty)$, that by itself is a difficult task, and the consequent evaluation of the integral (3) for different values of τ .

Lyapunov matrices: new definition

Definition 4.2

We say that matrix $U(\tau)$ is a Lyapunov matrix of system (1), associated with a symmetric matrix W, if it satisfies the dynamic property

$$\frac{d}{d\tau}U(\tau) = U(\tau)A_0 + U(\tau - h)A_1, \quad \tau \ge 0,$$
(4)

the symmetry property

$$U(-\tau) = U^{T}(\tau), \quad \tau \ge 0, \tag{5}$$

and the algebraic property

$$U(0)A_0 + U(-h)A_1 + A_0^T U(0) + A_1^T U(h) = -W.$$
(6)

Consistency Theorem

On the one hand, the new definition allows to overcome the first limitation of the original definition of the Lyapunov matrices - the exponential stability assumption. On the other hand, it poses the new question: Does Definition 4.2 define for the case of exponentially stable system (1) the same Lyapunov matrix as that defined by improper integral (3)?

Theorem 4.2

Let system (1) be exponentially stable. Then matrix (3) is the unique solution of equation (4) that satisfies properties (5), (6).

Auxiliary delay free boundary problem

Auxiliary matrices

Let $U(\tau)$ be a Lyapunov matrix assoiciated with a symmetric matrix W. We define two auxiliary matrices

$$Y(\tau) = U(\tau), \quad Z(\tau) = U(\tau - h), \quad \tau \in [0, h].$$

Auxiliary delay free boundary problem

Lemma 5.2

Let $U(\tau)$ be a Lyapunov matrix associated with a symmetric matrix W, then the auxiliary matrices satisfy the following delay free system of matrix equations

$$\frac{d}{d\tau}Y(\tau) = Y(\tau)A_0 + Z(\tau)A_1, \quad \frac{d}{d\tau}Z(\tau) = -A_1^T Y(\tau) - A_0^T Z(\tau), \quad (7)$$

and the boundary value conditions

$$Y(0) = Z(h),$$
 $A_0^T Y(0) + Y(0)A_0 + A_1^T Y(h) + Z(0)A_1 = -W.$ (8)

Lyapunov matrices: Existence issue

Now we show that conversely, any solution of the boundary value problem (7)-(8) generates a Lyapunov matrix associated with W.

Theorem 5.2

If a pair $(Y(\tau), Z(\tau))$ is a solution of the boundary value problem (7)-(8), then matrix

$$U(\tau) = \frac{1}{2} \left[Y(\tau) + Z^T(h - \tau) \right], \quad \tau \in [0, h],$$

is a Lyapunov matrix associated with W, if we extend it to [-h,0) by setting $U(-\tau) = U^T(\tau)$, for $\tau \in (0,h]$.

Lyapunov matrices: Existence issue

Corollary 1.2

If the boundary value problem (7)-(8) admits a unique solution $(Y(\tau),Z(\tau))$, then matrix

$$U(\tau) = Y(\tau), \quad \tau \in [0, h],$$

is a unique Lyapunov matrix associated with W.

Lyapunov condition

Definition 5.2

We say that system (1) satisfies the Lyapunov condition if the spectrum of the system,

$$\Lambda = \left\{ s \mid \det\left(sI - A_0 - e^{-sh}A_1\right) = 0 \right\},\,$$

does not contain a point s_0 such that $-s_0$ also belongs to the spectrum, or say it in other way, there are no eigenvalues of the system disposed symmetrically with respect to the origin of the complex plane.

Remark 1.2

If system (1) satisfies the Lyapunov condition, then it has no eigenvalues on the imaginary axis of the complex plane.

Uniqueness Theorem

Theorem 6.2

System (1) admits a unique Lyapunov matrix associated with a given symmetric matrix W if and only if the system satisfies the Lyapunov condition.

Complete type functionals

Given three symmetric matrices W_j , j = 0, 1, 2, let us define the functional

$$w(\varphi) = \varphi^{T}(0)W_{0}\varphi(0) + \varphi^{T}(-h)W_{1}\varphi(-h) + \int_{-h}^{0} \varphi^{T}(\theta)W_{2}\varphi(\theta)d\theta.$$

If there exists a Lyapunov matrix $U(\tau)$, associated with matrix $W = W_0 + W_1 + hW_2$, compute the functional

$$v_0(\varphi) = \varphi^T(0)U(0)\varphi(0)$$

$$+2\varphi^T(0)\int_{-h}^0 U(-h-\theta)A_1\varphi(\theta)d\theta$$

$$+\int_{-h}^0 \varphi^T(\theta_1)A_1^T \left[\int_{-h}^0 U(\theta_1-\theta_2)A_1\varphi(\theta_2)d\theta_2\right]d\theta_1.$$

Complete type functionals

Theorem 7.2

The time derivative of the modified functional

$$v(\varphi) = v_0(\varphi) + \int_{-h}^{0} \varphi^T(\theta) \left[W_1 + (h + \theta)W_2 \right] \varphi(\theta) d\theta$$
 (9)

along the solutions of system (1) is such that the following equality holds

$$\frac{d}{dt}v(x_t) = -w(x_t), \quad t \ge 0.$$

Lower bound

Definition 6.2

We say that functional (9) is of the complete type if matrices W_j , j = 0, 1, 2, are positive definite.

Lemma 6.2

Let system (1) be exponentially stable. Given positive definite matrices W_j , j = 0, 1, 2, then there exists $\alpha_1 > 0$, such that the complete type functional (9) admits the following quadratic lower bound

$$\alpha_1 \|\varphi(0)\|^2 \le v(\varphi), \quad \varphi \in PC([-h, 0], \mathbb{R}^n).$$

Upper bound

Lemma 7.2

Let system (1) satisfy the Lyapunov condition, see Definition 5.2. Given symmetric matrices W_j , j = 0, 1, 2, then for some positive α_2 the functional (9) satisfies the inequality

$$v(\varphi) \le \alpha_2 \|\varphi\|_h^2, \quad \varphi \in PC([-h, 0], \mathbb{R}^n).$$

Krasovskii Theorem revisited

We return now to Krasovskii Theorem and show that the conditions of the theorem are necessary for the exponential stability of system (1).

Theorem 8.2

System (1) is exponentially stable if and only if there exists a functional $v: PC([-h, 0], \mathbb{R}^n) \to \mathbb{R}$ such that the following conditions are satisfied

- 1. $\alpha_1 \|\varphi(0)\|^2 \leq v(\varphi) \leq \alpha_2 \|\varphi\|_h^2$, for some positive α_1 , α_2 .
- 2. For some $\beta > 0$ the inequality

$$\frac{d}{dt}v(x_t) \le -\beta \|x(t)\|^2, \quad t \ge 0,$$

holds along the solutions of the system.

- Bellman, R. and Cooke, K.L., *Differential-Difference Equations*, Academic Press, New York, 1963.
- Castelan, W. B. and Infante, E. F., On a functional equation arising in the stability theory of difference-differential equations, *Quarterly of Applied Mathematics*, 35: 311–319, 1977.
- Castelan, W. B. and Infante, E. F., A Liapunov functional for a matrix neutral difference-differential equation with one delay, *Journal of Mathematical Analysis and Applications*, 71: 105–130, 1979.
- Datko, R., An algorithm for computing Liapunov functionals for some differential difference equations, In L. Weiss (Ed.), *Ordinary Differential Equations*, Academic Press, New York, 387–398, 1972.
- Datko, R., A procedure for determination of the exponential stability of certain differential-difference equations, *Quarterly of Applied Mathematics*, 36: 279–292, 1978.

- Datko, R., Lyapunov functionals for certain linear delay-differential equations in a Hilbert space, *Journal of Mathematical Analysis and Applications*, 76: 37–57, 1980.
 - Garcia-Lozano, H., and Kharitonov, V.L., Numerical computation of time delay Lyapunov matrices, 6th IFAC Workshop on Time Delay Systems, L'Aquila, Italy, 10-12 July, 2006.
- Graham, A., Kronecker Products and Matrix Calculus with Applications, Ellis Horwood, Ltd., Chichester, UK, 1981.
- Gu, K., Kharitonov, V.L. and Chen, J., Stability of Time Delay Systems, Birkhauser, Boston, MA, 2003.
- Huang, W., Generalization of Liapunov's theorem in a linear delay system, *Journal of Mathematical Analysis and Applications*, 142: 83–94, 1989.
- Infante, E.F., Some results on the Lyapunov stability of functional equations, In K.B. Hannsgen, T.L. Herdmn. H.W. Stech and R.L. Wheeler (Eds), *Volterra and Functional Differential Equations*,

- Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 81: 51–60, 1982.
- Infante, E.F. and Castelan, W.V., A Lyapunov functional for a matrix difference-differential equation, *Journal of Differential Equations*, 29: 439–451, 1978.
- Jarlebring, E., Vanbiervliet, J. and Michiels, W., Characterizing and computing the \mathcal{H}_2 norm of time delay systems by solwing the delay Lyapunov equation, *Proceedings 49th IEEE Conference on Decision and Control*, 2010.
- Kharitonov, V.L., Lyapunov matrices: Existence and uniqueness issues, *Automatica*, 46: 1725–1729, 2010.
- Kharitonov, V.L., Lyapunov functionals and matrices, *Annual Reviews in Control*, 34: 13–20, 2010.
- Kharitonov, V.L., On the uniqueness of Lyapunov matrices for a time-delay system, Systems & Control Letters, 61: 397–402, 2012.

- Kharitonov, V.L. and Hinrichsen, D., Exponential estimates for time delay systems, *Systems & Control Letters*, 53: 395–405, 2004.
- Kharitonov, V.L. and Plischke, E., Lyapunov matrices for time delay systems, *Systems & Control Letters*, 55: 697–706, 2006.
- Kharitonov, V. L. and Zhabko, A.P., Lyapunov-Krasovskii approach to robust stability analysis of time delay systems, *Automatica*, 39: 15–20, 2003.
- Krasovskii, N.N., Stability of Motion, [Russian], Moscow, 1959, [English translation] Stanford University Press, Stanford, CA, 1963.
- Krasovskii, N.N., On using the Lyapunov second method for equations with time delay, [Russian], *Prikladnaya Matematika i Mehanika*, 20: 315–327, 1956.
- Krasovskii, N.N., On the asymptotic stability of systems with aftereffect, [Russian], *Prikladnaya Matematika i Mechanika*, 20: 513–518, 1956.

- Louisel, J., Growth estimates and asymptotic stability for a class of differential-delay equation having time-varying delay, *Journal of Mathematical Analysis and Applications*, 164: 453–479, 1992.
- Louisell, J., Numerics of the stability exponent and eigenvalue abscissas of a matrix delay system, In L. Dugard and E.I. Verriest (Eds), *Stability and Control of Time delay Systems*, Lecture Notes in Control and Information Sciences, 228, Springer-Verlag, 140–157, 1997.
- Louisell, J., A matrix method for determining the imaginary axis eigenvalues of a delay system, *IEEE Transactions on Automatic Control*, 46: 2008-2012, 2001.
- Marshall, J.E., Gorecki, H., Korytowski, A. and Walton, K., *Time-Delay Systems: Stability and Performance Criteria with Applications*, Ellis Horwood, New York, New York, NY, 1992.
 - Mondie, S., Assesing the exact stability region of the single delay scalar equation via its Lyapunov function, *IMA Journal of Mathematical Control and Information*, ID:DNS004, 2012

Repin, Yu.M., Quadratic Lyapuno functionals for systems with delay [Russian], *Prikladnaya Matematika i Mechanika*, 29: 564–566, 1965.