Polyak Conference

May 2015 Moscow

Happy Birthday Boris

May you always remain young and productive

A Model Free Measurement Based Approach to Design

S. P. Bhattacharyya

Texas A&M University

Joint work with: L. H. Keel, D. N. Mohsenizadeh and V. A. Oliveira

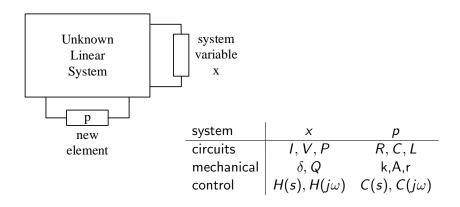
Overview

- Introduction
- Objectives and Motivation
- Mathematical Preliminaries
- A Measurement-based Approach to Linear Systems
- Applications
 - Linear DC/AC Circuits
 - Linear Mechanical Systems/Hydraulic Networks
 - Robust Stability Analysis
 - Fault-tolerant System Design
 - Control Systems
- Current Research
- Conclusions

Introduction

- In most engineering design techniques, a mathematical model of the system is required.
- The behavior of a system operating at (or close to) the equilibrium point can be modeled by sets of linear equations.
- The current practice of control system design requires a model (transfer function, state-space equations) of the system.
- In practice, systems are very complex ⇒ mathematical models will be complex/higher order.
- These observations motivate the search for a new approach whose objective is to determine the design variables directly from a small set of measurements and without producing a mathematical model of the system.

Analysis and Design of Unknown Linear Systems



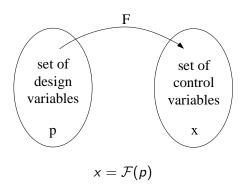
Question:

How do you connect a new element p to an arbitrary location of an unknown linear system to control a system variable x at some other location?

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ 釣 Q (*)

S. P. Bhattacharyya Linear Systems 5 / 104

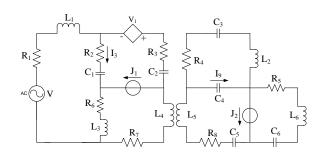
Functional Dependency and Measurements



Question:

Is it possible to determine ${\mathcal F}$ directly from measurements?

Functional Dependency and Measurements



Question:

Is it possible to find the functional dependencies \mathcal{F} , for example,

$$\textit{I}_{3} = \mathcal{F}_{1}(\textit{L}_{1}, \textit{C}_{2}), \quad \textit{I}_{9} = \mathcal{F}_{2}(\textit{L}_{1}, \textit{C}_{2})$$

without knowing the system parameters and directly from a small set of measurements?

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

S. P. Bhattacharyya Linear Systems 7 / 104

Objectives and Motivation

Objectives:

- ullet To develop a methodology to find the parametrized functional dependency ${\mathcal F}$ of any system variable on any set of design variables without knowing the system parameters.
- To determine the design variables directly from a small set of measurements and without constructing a mathematical model of the system.

Motivation:

 To analyze and solve design problems in linear systems without requiring a mathematical model of the system.

Mathematical Preliminaries

Suppose that the scalar parameter p (real or complex) appears in the square matrix A affinely:

$$A(p) = A_0 + p A_1$$

Lemma 1

If $rank(A_1) = r$, then

$$|A(p)| = \alpha_r p^r + \alpha_{r-1} p^{r-1} + \dots + \alpha_1 p + \alpha_0$$
 (1)

Consider $A(p_1, p_2, ..., p_I) = A_0 + p_1 A_1 + p_2 A_2 + ... + p_I A_I$:

Lemma 2

If $rank(A_i) = r_i, i = 1, 2, ..., I$, then

$$|A(p_1, p_2, \dots, p_l)| = \sum_{i_1 = 0}^{r_l} \cdots \sum_{i_n = 0}^{r_2} \sum_{i_1 = 0}^{r_1} \alpha_{i_1 i_2 \cdots i_l} \ p_1^{i_1} p_2^{i_2} \cdots p_l^{i_l}$$
(2)

Linear Systems and Cramer's Rule

Suppose that a linear system can be described as:

$$A(p)x = b(q) \tag{3}$$

- A(p): system characteristic matrix
- p: vector of system parameters
- x: vector of unknown system variables
- b(q): contains the system inputs, $b(q) = b_1q_1 + b_2q_2 + \cdots + b_mq_m$, where q_i 's are the system inputs.

Assumption 1

A(p) is a nonsingular matrix over the range of (physical) values of p.

• If there exists a physical value p_0 such that $A(p_0)$ becomes a singular matrix, then x will not be unique which is usually not the case for physical systems.

4 U P 4 CP P 4 E P

Applying Cramer's rule:

$$x_i(p,q) = \frac{|B_i(p,q)|}{|A(p)|}, \quad i = 1, 2, \dots, n$$
 (4)

- For unknown systems, $B_i(p,q)$ and A(p) are unknown.
- But, if the rank dependencies of p are known, then the determinants in (4) can be expanded (Lemmas 1 and 2).

A Measurement-based Approach to Linear Systems

Theorem 1

For the system of linear equations

$$A(p)x = b(q)$$

suppose that p appears in A(p) affinely:

$$A(p) = A_0 + p_1 A_1 + p_2 A_2 + \cdots + p_l A_l$$

and rank $(A_i) = r_i$, i = 1, 2, ..., I, and $b(q) = b_1q_1 + b_2q_2 + \cdots + b_mq_m$, then

$$x_i(p,q) = \frac{\alpha_i(p,q)}{\beta(p)}, \qquad i = 1,2,\ldots,n$$

where $\alpha_i(p,q)$ and $\beta(p)$ are multivariate polynomials in p, and $\alpha_i(p,q)$ is linear in q.

A Measurement-based Approach to Linear Systems

Theorem 1

Moreover, the coefficients of $\alpha_i(p,q)$ and $\beta(p)$ can be determined by setting (p,q) to μ (number of coefficients) linearly independent sets of values and measuring x_i .

Proof. The proof follows from Lemma 2 and the linear form of b(q).

S. P. Bhattacharyya Linear Systems 13 / 104

S. P. Bhattacharyya, L. H. Keel, and D. N. Mohsenizadeh. *Linear Systems: A Measurement Based Approach*. Springer-Verlag, 2014.

A General Linear Model

Consider the generMotivational Exampleal linear input-output model:

$$A(\mathbf{p})\mathbf{x} = B\mathbf{u}$$

$$\mathbf{y} = C(\mathbf{p})\mathbf{x} + D\mathbf{u}$$
(1)

with outputs \mathbf{y} and inputs \mathbf{u} :

$$\mathbf{y} = (y_1 \cdots y_m)', \mathbf{u} = (u_1 \cdots u_r)'$$

and design parameters $\mathbf{p}=(p_1 \cdots p_\ell)'$. Let $\mathbf{z}:=(\mathbf{x} \ \mathbf{y})'$ so that (1) may be rewritten as

$$\begin{pmatrix} A(\mathbf{p}) & 0 \\ C(\mathbf{p}) & -I \end{pmatrix} \mathbf{z} = \begin{pmatrix} B \\ -D \end{pmatrix} \mathbf{u}. \tag{2}$$

A Parametrized Input-Output Solution

Let

$$\mathcal{P} = \{ \mathbf{p} : p_k^- \le p_k \le p_k^+, k = 1, \cdots, \ell \}$$
$$\mathcal{U} = \{ \mathbf{u} : u_j^- \le u_j \le u_j^+, j = 1, \cdots, r \}$$

Assumption

The parameter \mathbf{p} appears affinely in $A(\mathbf{p})$ and $C(\mathbf{p})$, that is

$$A(\mathbf{p}) = A_0 + p_1 A_1 + \dots + p_{\ell} A_{\ell}$$

$$C(\mathbf{p}) = C_0 + p_1 C_1 + \dots + p_{\ell} C_{\ell}.$$

Assumption

$$|T(\mathbf{p})| \neq 0, p \in \mathcal{P}.$$

A Parametrized Input-Output Solution

Theorem

For the system described by (1), the input-output relationship is

$$y_i = \sum_{j=1}^r \frac{\beta_{ij}(\mathbf{p})}{\alpha(\mathbf{p})} u_j, \quad i = 1, 2, \cdots, m, j = 1, 2, \cdots, r$$
(3)

with $\beta_{ij}(\mathbf{p})$ and $\alpha(\mathbf{p})$ as already defined. In matrix form, the input outp ut relationship is:

$$\mathbf{y} = \frac{1}{\alpha(\mathbf{p})} \begin{pmatrix} \beta_{11}(\mathbf{p}) & \cdots & \beta_{1r}(\mathbf{p}) \\ \vdots & & \vdots \\ \beta_{m1}(\mathbf{p}) & \cdots & \beta_{mr}(\mathbf{p}) \end{pmatrix} \mathbf{u}. \tag{4}$$

Measurement Based Approach

Knowledge $\alpha(\mathbf{p})$ and $\beta_{ij}(\mathbf{p})$ is sufficient to determine outputs y_i as a function of \mathbf{p} and \mathbf{u} . Conducting experiments by setting \mathbf{p} and input \mathbf{u} to various values and measuring the corresponding y_i , these unknown coefficients can be determined. Let

$$y_1 = \frac{\beta_{11}(\mathbf{p})}{\alpha(\mathbf{p})} u_1 + \frac{\beta_{12}(\mathbf{p})}{\alpha(\mathbf{p})} u_2 \tag{6}$$

with

$$\beta_{1j}(\mathbf{p}) = \beta_{1j0} + \beta_{1j1}p_1 + \beta_{1j2}p_2 + \beta_{1j3}p_1p_2, j = 1, 2$$

$$\alpha(\mathbf{p}) = \alpha_0 + \alpha_1p_1 + \alpha_2p_2 + \alpha_3p_1p_2$$
(7)

Measurement Based Approach

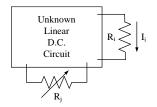
Set $u_2=0, u_1=u_1^*$ and measure y_1 for seven different sets of values (p_1, p_2) to determine the seven coefficients of $\alpha(\mathbf{p})$ and $\beta_{1j}(\mathbf{p}), j=1,2,$ $y_1(i), i=1,\cdots,7, \ \mathbf{p}(i)=[p_1(i)\ p_2(i)]$

$$M \left(\begin{array}{ccccc} \alpha_1 & \alpha_2 & \alpha_3 & \beta_{1j0} & \beta_{1j1} & \beta_{1j2} & \beta_{1j3} \end{array} \right)' = \\ - \left(\begin{array}{cccccc} y_1(1) & y_1(2) & y_1(3) & y_1(4) & y_1(5) & y_1(6) & y_1(7) \end{array} \right)'$$
(8)

M=

$$\begin{pmatrix} y_1(1)\rho_1(1) & y_1(1)\rho_2(1) & y_1(1)\rho_1(1)\rho_2(1) & -u_1(1) & -u_1(1)\rho_1(1) & -u_1(1)\rho_2(1) & -u_1(1)\rho_1(1)\rho_2(1) \\ y_1(2)\rho_1(2) & y_1(2)\rho_2(2) & y_1(2)\rho_1(2)\rho_2(2) & -u_1(2) & -u_1(2)\rho_1(2) & -u_1(2)\rho_2(2) & -u_1(2)\rho_1(2)\rho_2(2) \\ y_1(3)\rho_1(3) & y_1(3)\rho_2(3) & y_1(3)\rho_1(3)\rho_2(3) & -u_1(3) & -u_1(3)\rho_1(3) & -u_1(3)\rho_2(3) & -u_1(3)\rho_1(3)\rho_2(3) \\ y_1(4)\rho_1(4) & y_1(4)\rho_2(4) & y_1(4)\rho_1(4)\rho_2(4) & -u_1(4) & -u_1(4)\rho_1(4) & -u_1(4)\rho_2(4) & -u_1(4)\rho_1(4)\rho_2(4) \\ y_1(5)\rho_1(5) & y_1(5)\rho_2(5) & y_1(5)\rho_1(5)\rho_2(5) & -u_1(5) & -u_1(5)\rho_1(5) & -u_1(5)\rho_2(5) & -u_1(5)\rho_1(5)\rho_2(5) \\ y_1(6)\rho_1(6) & y_1(6)\rho_2(6) & y_1(6)\rho_1(6)\rho_2(6) & -u_1(6) & -u_1(6)\rho_1(6) & -u_1(6)\rho_2(6) & -u_1(6)\rho_1(6)\rho_2(6) \\ y_1(7)\rho_1(7) & y_1(7)\rho_2(7) & y_1(7)\rho_1(7)\rho_2(7) & -u_1(7) & -u_1(7)\rho_1(7) & -u_1(7)\rho_2(7) & -u_1(7)\rho_1(7)\rho_2(7) \end{pmatrix}$$

Linear DC Circuits: Current Control using a Single Resistor



- Design objective: control I_i (the current in the i-th branch)
- ullet Design variable: resistor R_j at an arbitrary location

Theorem 2

In a linear DC circuit, the functional dependency of any current I_i on any resistance R_j can be determined by at most 3 measurements of the current I_i obtained for 3 different values of R_i .

S. P. Bhattacharyya Linear Systems 14 / 104

N. Mohsenizadeh et al. "A Measurement Based Approach to Circuit Design". In: IASTED International Conf. on Engineering and Applied Science. Colombo, Sridanka 2012 pp. 27–34.0.0

$$A(p)x = b(q) \tag{5}$$

$$I_i = x_i = \frac{|B_i(p, q)|}{|A(p)|}$$
 (6)

Each resistance R_j appears only in one column of A(p); thus, we say it has rank 1 dependency.

Consider two cases:

- Case 1: $i \neq j$
- Case 2: i = j

Case 1 $(i \neq j)$:

- $B_i(p,q)$ is of rank 1 w.r.t. R_j
- A(p) is of rank 1 w.r.t. R_j

According to Lemma 1:

$$I_i(R_j) = \frac{\tilde{\alpha_0} + \tilde{\alpha_1}R_j}{\tilde{\beta_0} + \tilde{\beta_1}R_i} \tag{7}$$

where $\tilde{\alpha_0}, \tilde{\alpha_1}, \tilde{\beta_0}, \tilde{\beta_1}$ are constants.

- $\tilde{\beta}_0 = \tilde{\beta}_1 = 0 \Rightarrow I_i \to \infty, \ \forall R_j$, physically impossible \Rightarrow Rule this out.
- $\tilde{\beta_1} \neq 0$:

$$I_i(R_j) = \frac{\alpha_0 + \alpha_1 R_j}{\beta_0 + R_j} \tag{8}$$

where $\alpha_0, \alpha_1, \beta_0$ are unknown constants.

• To determine $\alpha_0, \alpha_1, \beta_0$: Set R_j to 3 different values and measure I_i :

$$\underbrace{\begin{bmatrix}
1 & R_{j1} & -I_{i1} \\
1 & R_{j2} & -I_{i2} \\
1 & R_{j3} & -I_{i3}
\end{bmatrix}}_{M} \underbrace{\begin{bmatrix}
\alpha_{0} \\
\alpha_{1} \\
\beta_{0}
\end{bmatrix}}_{I} = \underbrace{\begin{bmatrix}
I_{i1}R_{j1} \\
I_{i2}R_{j2} \\
I_{i3}R_{j3}
\end{bmatrix}}_{m}$$
(9)

- $|M| \neq 0 \Leftrightarrow$ unique solution for $\alpha_0, \alpha_1, \beta_0$
- |M| = 0 \Leftrightarrow last column of M is a linear combination of the first two columns:

$$I_i(R_i) = \alpha_0 + \alpha_1 R_i \tag{10}$$

This corresponds to the case where $\tilde{\beta}_1=0$ in (7).

S. P. Bhattacharyya Linear Systems 16 / 104

Case 2 (i = j):

- $B_i(p,q)$ is of rank 0 w.r.t. R_i
- A(p) is of rank 1 w.r.t. R_i

According to Lemma 1:

$$I_i(R_i) = \frac{\tilde{\alpha_0}}{\tilde{\beta_0} + \tilde{\beta_1}R_i} \tag{11}$$

• $\tilde{\beta_1} \neq 0$:

$$I_i(R_i) = \frac{\alpha_0}{\beta_0 + R_i} \tag{12}$$

• To determine α_0, β_0 : Set R_i to 2 different values and measure I_i :

$$\underbrace{\begin{bmatrix} 1 & -I_{i1} \\ 1 & -I_{i2} \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} \alpha_0 \\ \beta_0 \end{bmatrix}}_{u} = \underbrace{\begin{bmatrix} I_{i1}R_{i1} \\ I_{i2}R_{i2} \end{bmatrix}}_{m} \tag{13}$$

- $|M| \neq 0 \Leftrightarrow$ unique solution for α_0, β_0
- $|M| = 0 \Leftrightarrow$

$$I_i(R_i) = \alpha_0 \tag{14}$$

Remarks

Consider

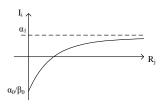
$$I_i(R_j) = \frac{\alpha_0 + \alpha_1 R_j}{\beta_0 + R_i} \tag{15}$$

Then

$$\frac{dI_i}{dR_j} = \frac{\alpha_1 \beta_0 - \alpha_0}{(\beta_0 + R_j)^2} \tag{16}$$

 I_i is monotonic in R_j .

- $\frac{\alpha_0}{\beta_0} > \alpha_1 \Rightarrow I_i$ monotonically decrease
- $\frac{\alpha_0}{\beta_0} < \alpha_1 \Rightarrow I_i$ monotonically increase



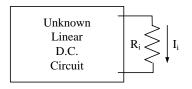
• The achievable range for I_i :

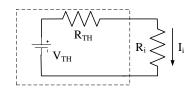
$$\min\{\frac{\alpha_0}{\beta_0}, \alpha_1\} < I_i < \max\{\frac{\alpha_0}{\beta_0}, \alpha_1\}$$
 (17)

• Current control problem: I_i within a desired prescribed range, $I_i^- \le I_i \le I_i^+ \implies$ unique range for R_j , $R_i^- \le R_j \le R_i^+$

Thevenin's Theorem (special case of Theorem 2, i = j)

Thevenin's Theorem: The current in a resistor/impedance connected to an arbitrary network can be obtained by representing the network by a voltage source and a resistance/impedance and these can be determined from short circuit and open circuit measurements made at these terminals.





- Short circuit current: I_{sc}
- ullet Open circuit voltage: $V_{oc}=V_{Th}$
- The Thevenin resistance: $R_{Th} = \frac{V_{oc}}{I_{sc}}$

$$I_i(R_i) = \frac{V_{Th}}{R_{Th} + R_i} \tag{18}$$

But this corresponds to the case i = j. Recall

$$I_i(R_i) = \frac{\alpha_0}{\beta_0 + R_i} \tag{19}$$

- Short circuit current: $I_{sc}=rac{lpha_0}{eta_0}$
- Open circuit voltage: $V_{oc} = V_{Th} = \alpha_0$
- The Thevenin resistance: $R_{Th} = \frac{V_{oc}}{l_{sc}} = \beta_0$

Substituting into (19):

$$I_i(R_i) = \frac{V_{Th}}{R_{Th} + R_i} \tag{20}$$

which is exactly Thevenin's Theorem.

- It is not necessary to measure short circuit current or open circuit voltage, indeed two **arbitrary** measurements suffice.
- This has practical and useful implications in circuits where short circuiting and open circuiting may sometimes be impossible.

S. P. Bhattacharyya Linear Systems 20 / 104

Generalized Thevenin's Theorem

- Statement of Theorem 2 is the generalization of Thevenin's Theorem.
- For the general case $i \neq j$:

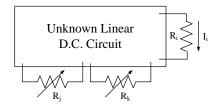
$$I_i(R_j) = \frac{\alpha_0 + \alpha_1 R_j}{\beta_0 + R_j} \tag{21}$$

- The resistor can be connected at a point different from the point where measurements are taken.
- The current can be predicted from arbitrary measurements, not necessarily from short and open circuit measurements.

S. P. Bhattacharyya Linear Systems 21 / 104

N. Mohsenizadeh et al. "Linear Circuits: A Measurement Based Approach". In: International Journal of Circuit Theory and Applications 43.2 (2015). published online: July 2013, pp. 205–232.

Current Control using Two Resistors



- Design objective: control the current in the i-th branch, l_i
- Design variables: resistors R_j and R_k at arbitrary locations

Theorem 3

In a linear DC circuit, the functional dependency of any current I_i on any two resistances R_j and R_k can be determined by at most 7 measurements of the current I_i obtained for 7 different sets of values (R_j, R_k) .

S. P. Bhattacharyya Linear Systems 22 / 104

Proof. Recall

$$A(p)x = b(q) \tag{22}$$

$$I_i = x_i = \frac{|B_i(p, q)|}{|A(p)|}$$
 (23)

Consider two cases:

- Case 1: $i \neq j, k$
- Case 2: i = j or i = k

Case 1 ($i \neq j, k$):

- $B_i(p,q)$ is of rank 1 w.r.t. R_j and R_k
- A(p) is of rank 1 w.r.t. R_j and R_k

According to Lemma 2:

$$I_i(R_j, R_k) = \frac{\tilde{\alpha_0} + \tilde{\alpha_1}R_j + \tilde{\alpha_2}R_k + \tilde{\alpha_3}R_jR_k}{\tilde{\beta_0} + \tilde{\beta_1}R_i + \tilde{\beta_2}R_k + \tilde{\beta_3}R_iR_k}$$
(24)

• $\tilde{\beta_3} \neq 0$:

$$I_{i}(R_{j}, R_{k}) = \frac{\alpha_{0} + \alpha_{1}R_{j} + \alpha_{2}R_{k} + \alpha_{3}R_{j}R_{k}}{\beta_{0} + \beta_{1}R_{j} + \beta_{2}R_{k} + R_{j}R_{k}}$$
(25)

• To determine $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \beta_0, \beta_1, \beta_2$: conduct 7 experiments

$$\underbrace{\begin{bmatrix} 1 & R_{j1} & R_{k1} & R_{j1}R_{k1} & -I_{i1} & -I_{i1}R_{j1} & -I_{i1}R_{k1} \\ 1 & R_{j2} & R_{k2} & R_{j2}R_{k2} & -I_{i2} & -I_{i2}R_{j2} & -I_{i2}R_{k2} \\ 1 & R_{j3} & R_{k3} & R_{j3}R_{k3} & -I_{i3} & -I_{i3}R_{j3} & -I_{i3}R_{k3} \\ 1 & R_{j4} & R_{k4} & R_{j4}R_{k4} & -I_{i4} & -I_{i4}R_{j4} & -I_{i4}R_{k4} \\ 1 & R_{j5} & R_{k5} & R_{j5}R_{k5} & -I_{i5} & -I_{i5}R_{k5} \\ 1 & R_{j6} & R_{k6} & R_{j6}R_{k6} & -I_{i6} & -I_{i6}R_{k6} \\ 1 & R_{j7} & R_{k7} & R_{j7}R_{k7} & -I_{i7} & -I_{i7}R_{j7} & -I_{i7}R_{k7} \end{bmatrix} \underbrace{\begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}}_{u} = \underbrace{\begin{bmatrix} I_{i1}R_{j1}R_{k1} \\ I_{i2}R_{j2}R_{k2} \\ I_{i3}R_{j3}R_{k3} \\ I_{i4}R_{j4}R_{k4} \\ I_{i5}R_{j5}R_{k5} \\ I_{i6}R_{j6}R_{k6} \\ I_{i7}R_{j7}R_{k7} \end{bmatrix}}_{m}$$

$$(26)$$

- $|M| \neq 0$ \Leftrightarrow unique solution for $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \beta_0, \beta_1, \beta_2$
- |M| = 0 \Rightarrow corresponding functional dependency can be obtained.

Case 2 (i = j or i = k):

- $B_i(p,q)$ is of rank 0 w.r.t. R_i and is of rank 1 w.r.t. R_k
- A(p) is of rank 1 w.r.t. R_i and R_k

According to Lemma 2:

$$I_i(R_i, R_k) = \frac{\tilde{\alpha_0} + \tilde{\alpha_1} R_k}{\tilde{\beta_0} + \tilde{\beta_1} R_i + \tilde{\beta_2} R_k + \tilde{\beta_3} R_i R_k}$$
(27)

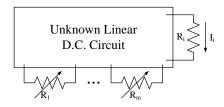
• $\tilde{\beta_3} \neq 0$:

$$I_{i}(R_{i}, R_{k}) = \frac{\alpha_{0} + \alpha_{1}R_{k}}{\beta_{0} + \beta_{1}R_{i} + \beta_{2}R_{k} + R_{i}R_{k}}$$
(28)

• To determine $\alpha_0, \alpha_1, \beta_0, \beta_1, \beta_2$: conduct 5 experiments

S. P. Bhattacharyya

Current Control using *m* Resistors



- Design objective: control the current in the i-th branch, l_i
- Design variables: resistors R_1, R_2, \dots, R_m at arbitrary locations

Theorem 4

In a linear DC circuit, the functional dependency of any current I_i on any m resistances R_j , $j=1,2,\ldots,m$, can be determined by at most $2^{m+1}-1$ measurements of the current I_i obtained for $2^{m+1}-1$ different sets on values (R_1,R_2,\ldots,R_m) .

Proof. Consider two cases:

- Case 1: $i \neq j$ for $j = 1, 2, \dots, m$
- Case 2: i = j for some j = 1, 2, ..., m

Case 1:

- $B_i(p,q)$ is of rank 1 w.r.t. R_i , j = 1, 2, ..., m
- A(p) is of rank 1 w.r.t. R_j , j = 1, 2, ..., m

According to Lemma 2:

$$I_{i}(R_{1}, R_{2}, \dots, R_{m}) = \frac{\sum_{i_{m}=0}^{1} \cdots \sum_{i_{2}=0}^{1} \sum_{i_{1}=0}^{1} \alpha_{i_{1}i_{2}\cdots i_{m}} R_{1}^{i_{1}} R_{2}^{i_{2}} \cdots R_{m}^{i_{m}}}{\sum_{i_{m}=0}^{1} \cdots \sum_{i_{2}=0}^{1} \sum_{i_{1}=0}^{1} \beta_{i_{1}i_{2}\cdots i_{m}} R_{1}^{i_{1}} R_{2}^{i_{2}} \cdots R_{m}^{i_{m}}}$$
(29)

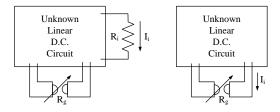
Case 2 (assume i = m):

- $B_i(p,q)$: rank 1 w.r.t. R_j , $j=1,2,\ldots,m-1$, and rank 0 w.r.t. R_m
- A(p) is of rank 1 w.r.t. R_j , j = 1, 2, ..., m

According to Lemma 2:

$$I_{i}(R_{1}, R_{2}, \dots, R_{m}) = \frac{\sum_{i_{m-1}=0}^{1} \cdots \sum_{i_{2}=0}^{1} \sum_{i_{1}=0}^{1} \alpha_{i_{1}i_{2}\cdots i_{m-1}} R_{1}^{i_{1}} R_{2}^{i_{2}} \cdots R_{m-1}^{i_{m-1}}}{\sum_{i_{m}=0}^{1} \cdots \sum_{i_{2}=0}^{1} \sum_{i_{1}=0}^{1} \beta_{i_{1}i_{2}\cdots i_{m}} R_{1}^{i_{1}} R_{2}^{i_{2}} \cdots R_{m}^{i_{m}}}$$

Current Control using Gyrator Resistance



- ullet Design objective: control the current in the *i*-th branch, I_i
- ullet Design variable: gyrator resistance R_g at an arbitrary location

Theorem 5

In a linear DC circuit, the functional dependency of any current I_i on any gyrator resistance R_g can be determined by at most 5 measurements of the current I_i obtained for 5 different values of R_g .

S. P. Bhattacharyya Linear Systems 28 / 104

Proof.

Each gyrator resistance R_g appears in 2 columns of A(p).

Consider two cases:

- Case 1: i-th branch is not connected to either port of the gyrator
- Case 2: *i*-th branch is connected to one port of the gyrator

Case 1:

- $B_i(p,q)$ is of rank 2 w.r.t. R_g
- A(p) is of rank 2 w.r.t. R_g

According to Lemma 1:

$$I_i(R_g) = \frac{\alpha_0 + \alpha_1 R_g + \alpha_2 R_g^2}{\beta_0 + \beta_1 R_g + R_g^2}$$
(31)

Case 2:

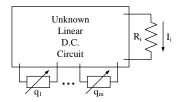
- $B_i(p,q)$ is of rank 1 w.r.t. R_g
- A(p) is of rank 2 w.r.t. R_g

According to Lemma 1:

$$I_i(R_g) = \frac{\alpha_0 + \alpha_1 R_g}{\beta_0 + \beta_1 R_g + R_g^2}$$
(32)

29 / 104

Current Control using Independent Sources



- Design objective: control the current in the *i*-th branch, l_i
- Design variables: independent sources q_1, q_2, \ldots, q_m at arbitrary locations

Theorem 6

In a linear DC circuit, the functional dependency of any current I_i on the independent sources can be determined by m measurements of the current I_i obtained for m linearly independent sets of values of the source vector q, where m is the number of independent sources.

30 / 104

Proof. Recall:

$$b(q) = b_1 q_1 + b_2 q_2 + \dots + b_m q_m \tag{33}$$

$$\Rightarrow B_i(p,q) = [A_1(p), \dots, A_{i-1}(p), b(q), A_{i+1}(p), \dots, A_n(p)]$$
 (34)

- $B_i(p,q)$ is of rank 1 w.r.t. q_1, q_2, \ldots, q_m
- $|B_i(p,q)|$ can be written as a linear combination of q_1, q_2, \ldots, q_m :

$$|B_i(p,q)| = |B_{i1}(p)|q_1 + |B_{i2}(p)|q_2 + \dots + |B_{im}(p)|q_m$$
 (35)

where

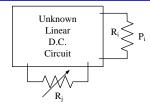
$$B_{ij}(p) = [A_1(p), \ldots, A_{i-1}(p), b_j, A_{i+1}(p), \ldots, A_n(p)], \ j = 1, 2, \ldots, m$$

• A(p) is of rank 0 w.r.t. $q_1, q_2, \ldots, q_m \Rightarrow |A(p)| = const.$

The functional dependency will be:

$$l_i(q_1, q_2, \dots, q_m) = \alpha_1 q_1 + \alpha_2 q_2 + \dots + \alpha_m q_m$$
 (36)

Power Level Control using a Single Resistor



- Design objective: control the power level P_i , in the resistor R_i , located in the i-th branch
- Design variable: resistor R_i at an arbitrary location

Theorem 7

In a linear DC circuit, the functional dependency of the power level P_i , in the resistor R_i , on any resistance R_j can be determined by at most 3 measurements of the current I_i (passing through R_i) obtained for 3 different values of R_j , and 1 measurement of the voltage across the resistor R_i , corresponding to one of the resistance settings.

Proof. Consider two cases:

- Case 1: $i \neq j$
- Case 2: i = j

Case 1 $(i \neq j)$:

- $P_i(R_j) = \frac{V_i}{I_i} I_i^2(R_j)$
- The functional dependency $I_i(R_j)$ is as either forms (8) or (10)
- The ratio $\frac{V_i}{l_i}$ is the same for each experiment \Rightarrow only 1 extra measurement of V_i , across the resistor R_i , is needed
- Assume one measures V_{i1} from the first experiment
- The functional dependency will be:
 - If $|M| \neq 0$ in (9):

$$P_i(R_j) = \frac{V_{i1}}{I_{i1}} \left(\frac{\alpha_0 + \alpha_1 R_j}{\beta_0 + R_j} \right)^2 \tag{37}$$

• If |M| = 0 in (9):

$$P_i(R_j) = \frac{V_{i1}}{I_{i1}} (\alpha_0 + \alpha_1 R_j)^2$$
 (38)

Case 2 (i = j):

- $P_i(R_i) = R_i I_i^2(R_i)$
- The functional dependency $I_i(R_i)$ is as either forms (12) or (14)
- The functional dependency will be:
 - If $|M| \neq 0$ in (13):

$$P_i(R_i) = R_i \left(\frac{\alpha_0}{\beta_0 + R_i}\right)^2 \tag{39}$$

• If |M| = 0 in (13):

$$P_i(R_i) = \alpha_0^2 R_i \tag{40}$$

Similarly, the functional dependency of P_i on any two or more resistances, or any gyrator resistance, can be obtained.

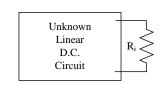
Maximum Power Transfer Theorem

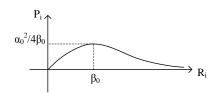
Maximum Power Transfer Theorem: To obtain maximum external power from a source with an internal resistance, the resistance of the load (R_i) must be equal to the resistance of the source as viewing from the output terminals (R_{Th}) .

Recall

$$P_i(R_i) = R_i \left(\frac{\alpha_0}{\beta_0 + R_i}\right)^2 \tag{41}$$

and that $\beta_0 = R_{Th}$.

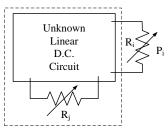


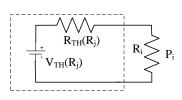


$$P_{i,max} = \frac{\alpha_0^2}{4\beta_0} \tag{42}$$

Question:

Is it possible to adjust R_j and set the load resistance $R_i = R_{Th}(R_j)$ to receive maximum power P_i ?



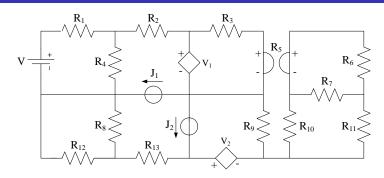


$$P_i(R_i, R_j) = R_i \left(\frac{\alpha_0 + \alpha_1 R_j}{\beta_0 + \beta_1 R_i + \beta_2 R_j + R_i R_j} \right)^2$$
(43)

$$\frac{dP_{i}}{dR_{i}} = 0
\frac{dP_{i}}{dR_{j}} = 0 \Rightarrow
\begin{cases}
R_{j} = \frac{2\alpha_{1}\beta_{0}\beta_{1} - \alpha_{0}\beta_{1}\beta_{2} - \alpha_{0}\beta_{0}}{2\alpha_{0}\beta_{2} - \alpha_{1}\beta_{0} - \alpha_{1}\beta_{1}\beta_{2}} \\
R_{i} = \frac{\alpha_{1}\beta_{0} - \alpha_{0}\beta_{2}}{\alpha_{0} - \alpha_{1}\beta_{1}}
\end{cases}$$
(44)

$$P_{i,\text{max}} = \frac{\alpha_0 \alpha_1 \beta_0 + \alpha_0 \alpha_1 \beta_1 \beta_2 - \alpha_0^2 \beta_2 - \alpha_1^2 \beta_0 \beta_1}{(\beta_0 - \beta_1 \beta_2)^2}$$
(45)

Example: A DC Circuit



Design objective: control the power levels

$$40 \le P_3 \le 60 \ (W) \tag{46}$$

$$1 \le P_6 \le 8 \ (W) \tag{47}$$

$$0.5 \le P_{11} \le 5 \ (W) \tag{48}$$

• Design variables: resistors R_1 and R_6

(ロ) (部) (差) (差) 差 から(?)

• P_3 vs. R_1 and R_6 :

$$P_3(R_1, R_6) = \frac{V_{3,1}}{I_{3,1}} \left(\frac{\alpha_0 + \alpha_1 R_1 + \alpha_2 R_6 + \alpha_3 R_1 R_6}{\beta_0 + \beta_1 R_1 + \beta_2 R_6 + R_1 R_6} \right)^2$$

7 measurements of current and 1 measurement of voltage is needed.

Exp.No.	$R_1(\Omega)$	$R_6(\Omega)$	$I_3(A)$
1	7	1	3.33
2	13	8	2.71
3	21	19	2.47
4	35	26	2.57
5	40	32	2.52
6	52	45	2.47
7	59	56	2.44

Exp.No.	$R_1(\Omega)$	$R_6(\Omega)$	V _{3,1} (V)
1	7	1	33.3

• These numerical values yield: $\alpha_0 = 98.4$, $\alpha_1 = 36$, $\alpha_2 = 6.6$, $\alpha_3 = 2.4$, $\beta_0 = 58.5$, $\beta_1 = 5$, $\beta_2 = 11.7$ \Rightarrow

$$P_3(R_1, R_6) = \frac{33.3}{3.33} \left(\frac{98.4 + 36R_1 + 6.6R_6 + 2.4R_1R_6}{58.5 + 5R_1 + 11.7R_6 + R_1R_6} \right)^2$$

S. P. Bhattacharvya Linear Systems 38 / 104

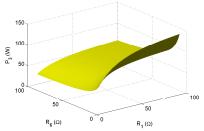


Figure: P_3 vs. R_1 and R_6

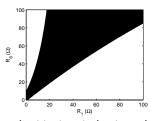


Figure: Region (in black color) where (46) is satisfied.

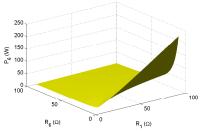


Figure: P_6 vs. R_1 and R_6

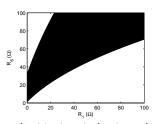


Figure: Region (in black color) where (47) is satisfied.

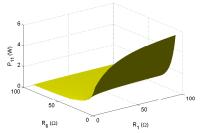


Figure: P_{11} vs. R_1 and R_6

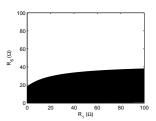


Figure: Region (in black color) where (48) is satisfied.

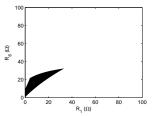


Figure: Region (in black color) where (46), (47) and (48) are satisfied.

Motivational Example

Consider the DC circuit

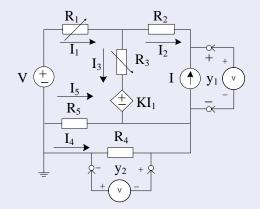


Figure: Circuit used in simulations.

Simulation Example Using PSpice

A simulation was performed with the circuit shown before by selecting R_1 , R_3 as parameters as illustrated below.

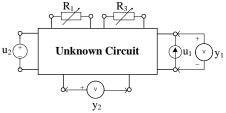


Figure: Circuit showing the parameters, inputs and outputs varied to obtain the results

Simulation Example Using PSpice

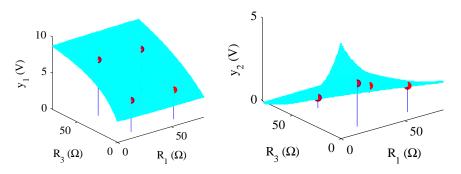


Figure: Solution surface for y_1 and y_2 showing the extremal points of obtained via PSpice.

Simulation Example Using PSpice

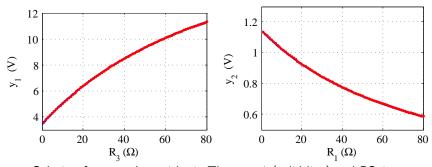
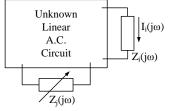


Figure: Solution for y_1 and y_2 with via Theorem 1 (solid line) and PSpice simulation (dashed line).

Linear AC Circuits: Current Control using a Single Impedance

Consider a linear AC circuit operating at the steady-state and at a fixed frequency ω .



- Design objective: control the current in the i-th branch, l_i
- Design variable: impedance Z_j at an arbitrary location

Theorem 8

In a linear AC circuit, the functional dependency of any current phasor I_i on any impedance Z_j can be determined by at most 3 measurements of the current phasor I_i obtained for 3 different complex values of Z_i .

Proof. Similar to its DC circuit counterpart. The main difference is that the circuit signals/variables and constants appearing in the functional dependencies will be complex quantities rather than real numbers.

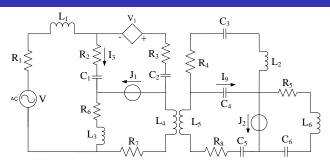
Case 1 $(i \neq j)$:

$$I_i(Z_j) = \frac{\alpha_0 + \alpha_1 Z_j}{\beta_0 + Z_j} \tag{49}$$

Case 2 (i = j):

$$I_i(Z_i) = \frac{\alpha_0}{\beta_0 + Z_i} \tag{50}$$

Example: An AC Circuit



Design objective: control the currents

$$0 \le |I_3| \le 4 \ (A), \tag{51}$$

$$10 \le \angle I_3 \le 30 \ (deg), \tag{52}$$

$$0 \le |I_9| \le 2.5 \ (A), \tag{53}$$

$$-30 \le \angle l_9 \le -10 \ (deg).$$
 (54)

• Design variables: inductor L_1 and capacitor C_2

S. P. Bhattacharyya Linear Systems 45 / 104

• I_3 vs. L_1 and C_2 :

$$I_3(L_1, C_2) = \frac{\alpha_0 + \alpha_1 L_1 j \omega_0 + \alpha_2 / (C_2 j \omega_0) + \alpha_3 L_1 / C_2}{\beta_0 + \beta_1 L_1 j \omega_0 + \beta_2 / (C_2 j \omega_0) + L_1 / C_2}$$

7 measurements of current phasor I_3 for 7 different sets of values (L_1, C_2) is needed.

Exp.No.	$L_1(mH)$	$C_2(\mu F)$	$I_3(A)$
1	13	10	3.3-2.9i
2	25	20	2.7-3.2i
3	32	23	2.3-3.4i
4	45	29	1.4-3.6i
5	54	33	.7-3.5i
6	68	40	5-2.9i
7	90	47	-1.4-1.3i

$$I_3(L_1, C_2) = \frac{(-1502 - 2772j) + (173 + 74j)L_1j\omega_0 + (106 + 151j)/(C_2j\omega_0)}{(-481 - 316j) + (13 + 13j)L_1j\omega_0 + (30 + 15j)/(C_2j\omega_0) + L_1/C_2}$$

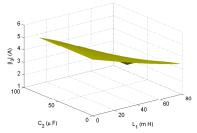


Figure: $|I_3(j\omega_0)|$ vs. L_1 and C_2

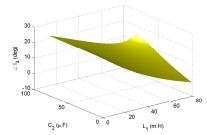


Figure: $\angle I_3(j\omega_0)$ vs. L_1 and C_2

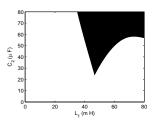


Figure: Region (in black color) where (51) and (52) are satisfied.

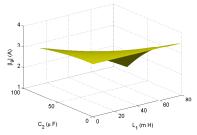


Figure: $|I_9(j\omega_0)|$ vs. L_1 and C_2

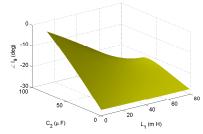


Figure: $\angle I_9(j\omega_0)$ vs. L_1 and C_2

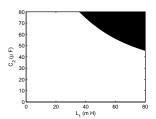


Figure: Region (in black color) where (53) and (54) are satisfied.

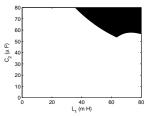
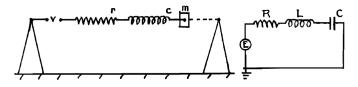


Figure: Region (in black color) where (51)-(54) are satisfied.

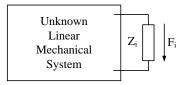
Linear Mechanical Systems: Analogy btw. Electrical and Mechanical Systems

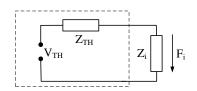
Electrical Sys.	Mechanical Sys.
Voltage, V	Velocity, V
Current, I	Force, F
Resistance, R	Lubricity, 1/B
Capacitance, C	Mass, M
Inductance, L	Compliance, 1/K

- Electrical systems: $V = IZ_{\rm elec}$, $Z_{\rm elec} = R + i(\omega L 1/\omega C)$
- ullet Mechanical systems: $V=Far{Z}_{
 m mech}$, $ar{Z}_{
 m mech}=r+i(\omega c-1/\omega m)$
- 1/B = r and 1/K = c



Equivalent Thevenin's Theorem

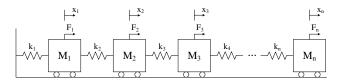




$$F_i(\bar{Z}_i) = \frac{V_{Th}}{\bar{Z}_{Th} + \bar{Z}_i} \tag{55}$$

- $P_i(\bar{Z}_i) = F_i V_i = \bar{Z}_i F_i^2 = \bar{Z}_i (\frac{V_{Th}}{\bar{Z}_{Th} + \bar{Z}_i})^2$
- $P_i(\bar{Z}_i)$ is maximum if $\bar{Z}_i = Z_{Th}$.

Network of Springs



- Design objective: control the displacements of the masses
- Design variable: some set of spring stiffness at arbitrary locations

$$\begin{bmatrix}
k_{1} + k_{2} & -k_{2} & 0 & \cdots & 0 & 0 \\
-k_{2} & k_{2} + k_{3} & -k_{3} & \cdots & 0 & 0 \\
0 & -k_{3} & k_{3} + k_{4} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -k_{n-1} & k_{n}
\end{bmatrix}
\underbrace{\begin{bmatrix}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{bmatrix}}_{X} = \underbrace{\begin{bmatrix}
F_{1} \\
F_{2} \\
F_{3} \\
\vdots \\
F_{n}
\end{bmatrix}}_{b(q)}$$
(56)

S. P. Bhattacharyya Linear Systems 52 / 104

N. Mohsenizadeh et al. "A Measurement Based Approach to Mechanical Systems". In: 9th Asian Control Conference. Istanbul, Turkey, 2013.

- $p = [k_1, k_2, ..., k_n]^T$
- x: vector of unknown displacements
- q: vector of external forces

Theorem 9

In a network of linear springs, the functional dependency of any displacement x_i on any spring stiffness k_j can be determined by 3 measurements of the displacement x_i obtained for 3 different values of k_j .

Proof.

- $B_i(p,q)$ is of rank 1 w.r.t. k_j
- A(p) is of rank 1 w.r.t. k_j

According to Lemma 1:

$$x_i(k_j) = \frac{\tilde{\alpha_0} + \tilde{\alpha_1}k_j}{\tilde{\beta_0} + \tilde{\beta_1}k_j} \tag{57}$$

• $\tilde{\beta}_0 = \tilde{\beta}_1 = 0 \Rightarrow x_i \to \infty, \ \forall k_j$, physically impossible \Rightarrow Rule this out.

S. P. Bhattacharyya Linear Systems 53 / 104

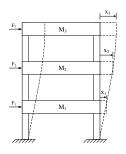
• $\tilde{\beta_1} \neq 0$:

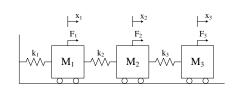
$$x_i(k_j) = \frac{\alpha_0 + \alpha_1 k_j}{\beta_0 + k_j} \tag{58}$$

• To determine $\alpha_0, \alpha_1, \beta_0$:

$$\underbrace{\begin{bmatrix} 1 & k_{j1} & -x_{i1} \\ 1 & k_{j2} & -x_{i2} \\ 1 & k_{j3} & -x_{i3} \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \end{bmatrix}}_{l} = \underbrace{\begin{bmatrix} x_{i1}k_{j1} \\ x_{i2}k_{j2} \\ x_{i3}k_{j3} \end{bmatrix}}_{m} \tag{59}$$

Example: A Network of Springs





• Design objective: control x_2

$$-5 \le x_2 \le -3 \quad (cm) \tag{60}$$

• Design variables: spring stiffness k_2

S. P. Bhattacharyya

• Based on Theorem 9: 3 measurements of x_2 are needed for 3 different values of k_2 :

$$x_2 = \frac{\alpha_0 + \alpha_1 k_2}{\beta_0 + k_2} \tag{61}$$

Exp. #	$k_2 (kN/m)$	x ₂ (cm)
1	200	-3.5
2	300	-3.0
3	500	-2.6

Using these numerical values:

$$x_2 = \frac{-3000 - 0.02k_2}{k_2} \tag{62}$$

Applying the constraint on x₂:

$$100 \le k_2 \le 300 \quad (kN/m) \tag{63}$$

Truss Structures

Governing equations for static deflections:

$$A(p)x = b(q) \tag{64}$$

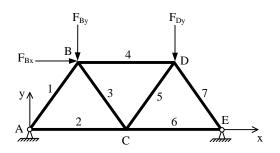
57 / 104

- A(p): global stiffness matrix
- x: vector of joint deflections
- b(q): vector of external forces (including reaction forces)
- A(p) will be generated by assembling element-wise stiffness matrices K_e :

$$K_{e} = \frac{E_{e}A_{e}}{L_{e}} \begin{bmatrix} \cos^{2}\theta_{e} & \frac{1}{2}\sin2\theta_{e} & -\cos^{2}\theta_{e} & -\frac{1}{2}\sin2\theta_{e} \\ \frac{1}{2}\sin2\theta_{e} & \sin^{2}\theta_{e} & -\frac{1}{2}\sin2\theta_{e} & -\sin^{2}\theta_{e} \\ -\cos^{2}\theta_{e} & -\frac{1}{2}\sin2\theta_{e} & \cos^{2}\theta_{e} & \frac{1}{2}\sin2\theta_{e} \\ -\frac{1}{2}\sin2\theta_{e} & -\sin^{2}\theta_{e} & \frac{1}{2}\sin2\theta_{e} & \sin^{2}\theta_{e} \end{bmatrix}$$
(65)

ullet For complex truss structures the size of A(p) becomes very large

4 □ > 4□ > 4 ₹ > 4 ₹ > 4 ₹



$$\underbrace{\begin{bmatrix} A_{11}(p) & A_{12}(p) \\ A_{12}^{T}(p) & A_{22}(p) \end{bmatrix}}_{A(p)} \underbrace{\begin{bmatrix} \delta_{Ax} \\ \delta_{Ay} \\ \vdots \\ \delta_{Ex} \\ \delta_{Ey} \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} F_{Ax} \\ F_{Ay} \\ \vdots \\ F_{Ex} \\ F_{Ey} \end{bmatrix}}_{b(q)} \tag{66}$$

$$A_{11}(\rho) = \tiny{\begin{bmatrix} \frac{R_1c^2\theta_1 + R_2c^2\theta_2}{R_1s^2\theta_1 + R_2s^2\theta_2} & \frac{-R_1c^2\theta_1}{R_1s^2\theta_1 + R_2s^2\theta_2} & \frac{-R_1c^2\theta_1}{-R_1s\theta_1} & \frac{-R_1s\theta_1}{-R_1s\theta_1} & \frac{-R_2c^2\theta_2}{-R_2s\theta_2} \\ & \frac{-R_1s\theta_1}{R_1c^2\theta_1 + R_3c^2\theta_3 + R_4c^2\theta_4} & \frac{R_1s\theta_1 + R_3s\theta_3 + R_4s\theta_4}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} & \frac{-2R_3s\theta_3}{-2R_3s\theta_3} \\ & \frac{-2R_3s\theta_2}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} & \frac{-2R_3s\theta_3}{R_2c^2\theta_2 + R_3c^2\theta_3 + R_6c^2\theta_5} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3 + R_4c^2\theta_4}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} & \frac{-2R_3s\theta_3}{R_2c^2\theta_2 + R_3c^2\theta_3 + R_6c^2\theta_5} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3 + R_4c^2\theta_4}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} & \frac{R_1s\theta_1 + R_3s\theta_3}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3s^2\theta_3 + R_4s^2\theta_4} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3c^2\theta_3 + R_4s^2\theta_4} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3c^2\theta_3 + R_4s^2\theta_4} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3c^2\theta_3 + R_4s^2\theta_4} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3c^2\theta_3 + R_4s^2\theta_4} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3c^2\theta_3 + R_4s^2\theta_3} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3c^2\theta_3} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3c^2\theta_3} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3c^2\theta_3} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1s^2\theta_1 + R_3c^2\theta_3} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1c^2\theta_1 + R_3c^2\theta_3} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1c^2\theta_1 + R_3c^2\theta_3} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1c^2\theta_1 + R_3c^2\theta_3} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1c^2\theta_1 + R_3c^2\theta_3} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1c^2\theta_1 + R_3c^2\theta_3} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1c^2\theta_1 + R_3c^2\theta_3} \\ & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1c^2\theta_1 + R_3c^2\theta_3} & \frac{R_1c^2\theta_1 + R_3c^2\theta_3}{R_1c^2\theta_1 + R$$

$$A_{12}(p) = \left[\begin{array}{ccccc} -R_2 s \theta_2 & 0 & 0 & 0 & 0 \\ -R_2 s^2 \theta_2 & 0 & 0 & 0 & 0 \\ -2R_3 s \theta_3 & -R_4 c^2 \theta_4 & -R_4 s \theta_4 & 0 & 0 \\ -2R_3 s^2 \theta_3 & -R_4 s \theta_4 & -R_4 s^2 \theta_4 & 0 & 0 \\ R_2 s \theta_2 + R_3 s \theta_3 + R_5 s \theta_5 + R_6 s \theta_6 & -R_5 c^2 \theta_5 & -R_5 s \theta_5 & -R_6 c^2 \theta_6 & -R_6 s \theta_6 \end{array} \right]$$

$$A_{22}(p) = \begin{bmatrix} {}^{R_{2}s^{2}\theta_{2} + R_{3}s^{2}\theta_{3} + R_{5}s^{2}\theta_{5} + R_{6}s^{2}\theta_{6}} & {}^{-R_{5}s\theta_{5}} & {}^{-R_{5}s\theta_{5}} & {}^{-R_{5}s\theta_{5}} & {}^{-R_{5}s^{2}\theta_{5}} & {}^{-R_{6}s\theta_{6}} & {}^{-R_{6}s^{2}\theta_{6}} & {$$

- Design objective: control the deflection of the joints
- Design variable: mechanical properties of elements (for example: cross section area)

Theorem 10

In a truss structure, the functional dependency of any joint displacement δ_i , in any direction, on any element cross section area A_j can be determined by 3 measurements of the joint displacement δ_i , in the respective direction, obtained for 3 different values of A_i .

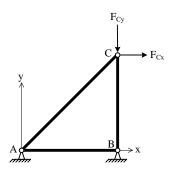
Proof.

- $B_i(p,q)$ is of rank 1 w.r.t. A_j
- A(p) is of rank 1 w.r.t. A_j

According to Lemma 1:

$$\delta_i(A_j) = \frac{\alpha_0 + \alpha_1 A_j}{\beta_0 + A_i} \tag{67}$$

Example: A Truss Structure



• Design objective: control δ_{Cx}

$$0 \le \delta_{Cx} \le 2 \quad (cm) \tag{68}$$

 \bullet Design variables: cross section area of the link AC, A_{AC}

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - り Q (C)

61 / 104

S. P. Bhattacharyya Linear Systems

General form of the functional dependency:

$$\delta_{Cx} = \frac{\alpha_0 + \alpha_1 A_{AC}}{\beta_0 + A_{AC}} \tag{69}$$

Exp. #	A_{AC} (mm^2)	δ_{Cx} (cm)
1	100	1.8
2	150	1.4
3	200	1.2

• Using these numerical values:

$$\delta_{Cx} = \frac{1.1 \times 10^{-6} + 6.67 \times 10^{-3} A_{AC}}{A_{AC}} \tag{70}$$

• Applying the constraint on δ_{Cx} :

$$A_{AC} \ge 83 \ (mm^2) \tag{71}$$

Linear Hydraulic Networks

If all the flows are in the laminar state ⇒ linear equations

$$A(p)x = b(q)$$

• Pressure drop:

$$\Delta P = \frac{8\mu LQ}{\pi r^4} \tag{72}$$

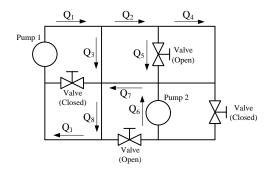
 μ : dynamic viscosity, L: length of pipe, Q: flow rate, r: inner radius

• Rewrite (72) as: $\Delta P = RQ$, where pipe resistance constant is:

$$R = \frac{8\mu L}{\pi r^4} \tag{73}$$

- A(p): contains the mechanical properties of pipes
- x: vector of unknown flow rates
- b(q): inputs to the system (such as pump pressures)

(마) (함) (문) (문) (문) (문)



$$\underbrace{\begin{bmatrix}
1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\
R_1 & 0 & R_3 & 0 & 0 & 0 & 0 & R_8 \\
0 & -R_2 & R_3 & 0 & -R_5 & R_6 & 0 & R_8 \\
0 & 0 & -R_2 & R_3 & -R_4 & 0 & 0 & -R_7 & 0
\end{bmatrix}}_{A(p)} \underbrace{\begin{bmatrix}
Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \\ Q_5 \\ Q_6 \\ Q_7 \\ Q_8\end{bmatrix}}_{\times} = \underbrace{\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ P_1 \\ P_2 \\ 0 \\ 0
\end{bmatrix}}_{b(q)} \tag{74}$$

Flow Rate Control using a Single Pipe Resistance

- Design objective: control the flow rates
- Design variable: any pipe resistance R_i at an arbitrary location

Theorem 11

In a linear hydraulic network, the functional dependency of any flow rate Q_i on any pipe resistance R_j can be determined by at most 3 measurements of the flow rate Q_i obtained for 3 different values of R_i .

Proof. Similar to DC circuits:

• Case 1 $(i \neq j)$: $B_i(p,q)$ and A(p) are both of rank 1 w.r.t. R_j :

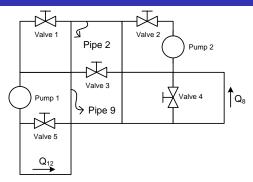
$$Q_i(R_j) = \frac{\alpha_0 + \alpha_1 R_j}{\beta_0 + R_j} \tag{75}$$

• Case 2 (i = j): $B_i(p, q)$: rank 0 w.r.t. R_i , A(p): rank 1 w.r.t. R_i :

$$Q_i(R_i) = \frac{\alpha_0}{\beta_0 + R_i} \tag{76}$$

S. P. Bhattacharyya Linear Systems 65 / 104

Example: A Linear Hydraulic Network



• Design objective: control flow rates Q_8 and Q_{12}

$$0.045 \le Q_8 \le 0.055 \ (m^3/s) \tag{77}$$

$$0.01 \le Q_{12} \le 0.03 \ (m^3/s) \tag{78}$$

ullet Design variables: radii of the pipes numbered 2 and 9, r_2 and r_9

General form of the functional dependency:

$$Q_{i}(R_{j}, R_{k}) = \frac{\alpha_{0} + \alpha_{1}R_{j} + \alpha_{2}R_{k} + \alpha_{3}R_{j}R_{k}}{\beta_{0} + \beta_{1}R_{j} + \beta_{2}R_{k} + R_{j}R_{k}}$$
(79)

Exp.#	r ₂ (m)	R_2 (Pa.s/m ³)	r ₉ (m)	R_9 $(Pa.s/m^3)$	$Q_8 \ (m^3/s)$
1	0.05	408	0.05	408	0.038
2	0.07	107	0.08	62	0.043
3	0.09	39	0.11	17	0.049
4	0.1	26	0.13	9	0.051
5	0.12	12	0.15	5	0.054
6	0.14	6	0.17	3	0.055
7	0.17	3	0.2	1.6	0.056

Using these numerical values:

$$Q_8(r_2, r_9) = \frac{8.7 \times 10^7 + \frac{1600}{r_2^4} + \frac{3500}{r_9^4} + \frac{0.034}{r_2^4 r_9^4}}{1.5 \times 10^9 + \frac{48000}{r_2^4} + \frac{75000}{r_9^4} + \frac{1}{r_2^4 r_9^4}}$$
(80)

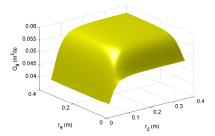


Figure: Q_8 vs. r_2 and r_9

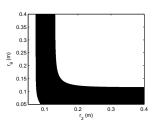


Figure: Region where (77) is satisfied

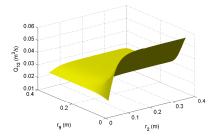


Figure: Q_{12} vs. r_2 and r_9

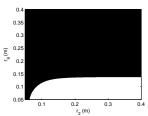


Figure: Region where (78) is satisfied

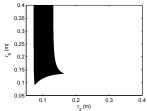


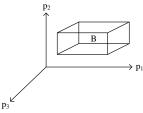
Figure: Region where (77) and (78) are satisfied

Application to Robust Stability Analysis

In an interval linear system:

$$A(p)x = b(q)$$

p and q are varying in intervals (box \mathcal{B}):



In physical systems, p usually appears in A(p) with rank one dependency:

- circuits: resistors, impedances and dependent sources
- truss structures: mechanical properties of the links
- hydraulic networks: pipe resistances
- signal flow block diagrams: each block

Recalling the *monotonic* behavior of the solution set x, we want to characterize the extremal values of x over \mathcal{B} .

S. P. Bhattacharyya Linear Systems 71 / 104

Theorem 12

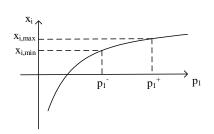
Suppose $A(p) = A_0 + p_1 A_1$, $\operatorname{rank}(A_1) = 1$, and p_1 is varying in an interval, $\mathcal{I} = [p_1^-, p_1^+]$, then the extremal values of x_i can be obtained from:

$$\min_{p_1 \in \mathcal{I}} x_i(p_1) = \min\{x_i(p_1^-), x_i(p_1^+)\}$$
 $\max_{p_1 \in \mathcal{I}} x_i(p_1) = \max\{x_i(p_1^-), x_i(p_1^+)\}$

Proof. For
$$p = p_1$$
 and rank $(A_1) = 1$:

$$x_i(p_1) = \frac{\alpha_0 + \alpha_1 p_1}{\beta_0 + p_1}$$

which is monotonic in p_1 .

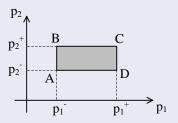


D. N. Mohsenizadeh, L. H. Keel, and S. P. Bhattacharyya. "An Extremal Result for Unknown Interval Linear Systems". In: 19th IFAC World Congress. Cape Town, South Africa, 2014, pp. 6502–6507.

Theorem 13

Suppose that $A(p) = A_0 + p_1A_1 + p_2A_2$, rank $(A_1) = \text{rank}(A_2) = 1$, and p_1 and p_2 are varying in a rectangle, \mathcal{R} :

$$\mathcal{R} = \{(p_1, p_2) \mid p_1^- \leq p_1 \leq p_1^+, \ p_2^- \leq p_2 \leq p_2^+\}$$



then the extremal values of x_i happen at the vertices of \mathcal{R} :

$$\min_{p_1, p_2 \in \mathcal{R}} x_i(p_1, p_2) = \min\{x_i(A), x_i(B), x_i(C), x_i(D)\}$$

$$\max_{p_1, p_2 \in \mathcal{R}} x_i(p_1, p_2) = \max\{x_i(A), x_i(B), x_i(C), x_i(D)\}$$

4 다 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4 전 M 4

Theorem 14

If
$$A(p) = A_0 + p_1 A_1 + p_2 A_2 + \dots + p_l A_l$$
, rank $(A_i) = 1$, $i = 1, 2, \dots, l$, $b(q) = b_1 q_1 + b_2 q_2 + \dots + b_m q_m$, and (p, q) are varying in a box, \mathcal{B} :

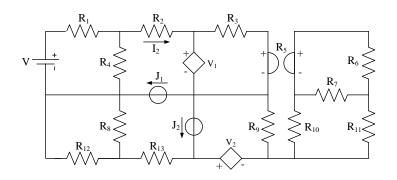
$$\mathcal{B} = \{(p,q) \mid p_i^- \leq p_i \leq p_i^+, \ i = 1, \dots, I, \ q_j^- \leq q_j \leq q_j^+, \ j = 1, \dots, m\}$$

with $v := 2^{l+m}$ vertices, labeled V_1, V_2, \dots, V_v , then:

$$\min_{p,q \in \mathcal{B}} x_i(p,q) = \min\{x_i(V_1), x_i(V_2), \dots, x_i(V_v)\}$$

$$\max_{p,q \in \mathcal{B}} x_i(p,q) = \max\{x_i(V_1), x_i(V_2), \dots, x_i(V_v)\}\$$

Example: Electrical Circuits



Problem: Find the extremal values of I_2 , if R_1 is varying in:

$$\mathcal{I} = [R_1^-, R_1^+] = [10, 30] (\Omega)$$

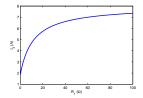
S. P. Bhattacharyya

Solution: Using Theorem 12, the extremal values of I_2 occur at $R_1^-=10$ (Ω) and $R_1^+=30$ (Ω):

$$I_{2,\min} = 4.7 (A), I_{2,\max} = 6.3 (A)$$

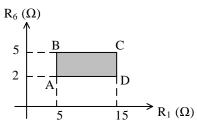
Alternative Approach: First find $I_2(R_1)$ by 3 measurements, and then evaluate I_2 at the extremes of \mathcal{I} :

Exp. No.	$R_1(\Omega)$	I ₂ (A)
1	7	4.2
2	18	5.6
3	32	6.4



$$I_2(R_1) = \frac{21.9 + 8R_1}{11.7 + R_1}$$

Problem: Considering the same circuit, find the extremal values of P_3 (in $R_3 = 10$ (Ω)) over \mathcal{R} :



Solution:

$$P_3(R_1, R_6) = R_3 I_3^2(R_1, R_6)$$

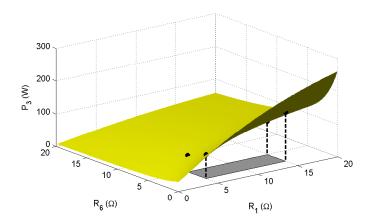
 $I_3(R_1,R_6)$ is monotonic in R_1 and R_6 , thus our extremal result gives:

$$P_{3,\text{min}} = 49.4 \ (W) \text{ at vertex B} = (5,5)$$

 $P_{3,\text{max}} = 150 \ (W) \text{ at vertex D} = (15,2)$

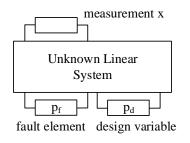
S. P. Bhattacharyya Linear Systems 77 / 104

Alternative Approach: First find $P_3(R_1, R_6)$ using 7 measurements and then evaluate P_3 by setting (R_1, R_6) to the values of vertices of \mathcal{R} :



Fault-tolerant System Design: Single Failure

Consider the following system



Problem: Design p_d such that the system performance x stays within an acceptable range as p_f undergoes normal and failure states.

• For example: $p_f = p_f^*$ (normal state), $p_f = 0$ or $p_f = \infty$ (failure state)

S. P. Bhattacharyya Linear Systems 79 / 104

P. Kallakuri, L. H. Keel, and S. P. Bhattacharyya. "Reliable Measurement-Based System Design: A New Paradigm". In: 19th IFAC World Congress. Cape Town, South Africa, 2014, pp. 9394–9399.

- Acceptable range of x: $x \in [x_{\min}, x_{\max}]$
- Supposing that p_f and p_d appear in the system characteristic matrix with rank 1 dependency:

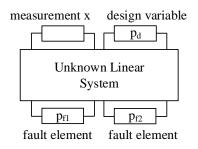
$$x(p_f, p_d) = \frac{\alpha_0 + \alpha_1 p_f + \alpha_2 p_d + \alpha_3 p_f p_d}{\beta_0 + \beta_1 p_f + \beta_2 p_d + p_f p_d}$$

where α 's and β 's can be determined from 7 measurements.

• The design task is to determine p_d such that:

$$x_{\min} \leq \min_{p_f} x(p_f, p_d), \qquad x_{\max} \geq \max_{p_f} x(p_f, p_d)$$

Fault-tolerant System Design: Two Failures



• If p_{f1}, p_{f2}, p_d appear with rank 1 dependency:

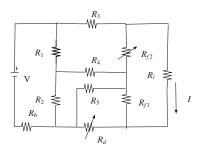
$$x(p_{f1},p_{f2},p_d) = \frac{\alpha_0 + \alpha_1 p_{f1} + \alpha_2 p_{f2} + \alpha_3 p_d + \alpha_4 p_{f1} p_{f2} + \alpha_5 p_{f1} p_d + \alpha_6 p_{f2} p_d + \alpha_7 p_{f1} p_{f2} p_d}{\beta_0 + \beta_1 p_{f1} + \beta_2 p_{f2} + \beta_3 p_d + \beta_4 p_{f1} p_{f2} + \beta_5 p_{f1} p_d + \beta_6 p_{f2} p_d + p_{f1} p_{f2} p_d}$$

• Design task: determine p_d such that:

$$x_{\min} \leq \min_{p_{f1}, p_{f2}} x(p_{f1}, p_{f2}, p_d), \qquad x_{\max} \geq \max_{p_{f1}, p_{f2}} x(p_{f1}, p_{f2}, p_d)$$

S. P. Bhattacharyya Linear Systems 81 / 104

Example: A Fault-tolerant System Design



- Resistors R_{f1} and R_{f2} are most vulnerable to faults.
- Design R_d so that I (current through R_i) stays within:

$$[I_{\min}, I_{\max}] = [0.5, 4]$$
 (A)

• Functional dependency $I(R_d, R_{f1}, R_{f2})$:

$$I(R_d, R_{f1}, R_{f2}) = \frac{\alpha_0 + \alpha_1 R_d + \alpha_2 R_{f1} + \alpha_3 R_{f2} + \alpha_4 R_d R_{f1} + \alpha_5 R_{f1} R_{f2} + \alpha_6 R_{f2} R_d + \alpha_7 R_d R_{f1} R_{f2}}{\beta_0 + \beta_1 R_d + \beta_2 R_{f1} + \beta_3 R_{f2} + \beta_4 R_d R_{f1} + \beta_5 R_{f1} R_{f2} + \beta_6 R_{f2} R_d + R_d R_{f1} R_{f2}}$$

Linear Systems 82 / 104 Measurements to determine $I(R_d, R_{f1}, R_{f2})$:

Exp.No	$R_d(\Omega)$	$R_{f1}(\Omega)$	$R_{f2}(\Omega)$	$I(R_d, R_{f1}, R_{f2})(A)$
1	1	1	1	3.53
2	2	3	4	3.62
3	7	7	7	4.35
4	10	9	12	3.99
5	13	12	17	3.68
6	18	16	20	3.54
7	21	20	25	3.24
8	24	28	31	2.85
9	29	35	35	2.65
10	34	42	43	2.38
11	39	51	56	2.06
12	43	67	67	1.77
13	51	75	70	1.71
14	58	83	79	1.59
15	75	90	85	1.53

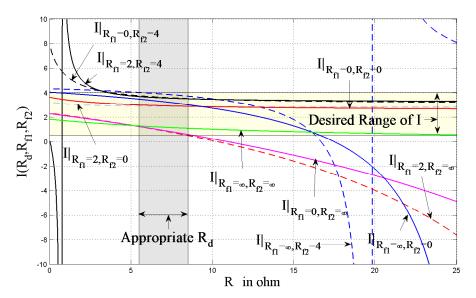
83 / 104

$$I(R_d,R_{f1},R_{f2}) = \frac{7.5 - 2.1R_d - 0.9R_{f1} + 1.28R_{f2} + 0.03R_dR_{f1} + 0.08R_{f1}R_{f2} + 0.11R_{f2}R_d - 0.0002R_dR_{f1}R_{f2}}{2 - 0.5R_d - 0.4R_{f1} + 0.5R_{f2} + 0.01R_dR_{f1} + 0.006R_{f1}R_{f2} + 0.02R_{f2}R_d + 0.001R_dR_{f1}R_{f2}}$$

Failure conditions:

R_{f1}	R_{f2}
Short	Normal
Open	Normal
Normal	Short
Normal	Open
Short	Short
Short	Open
Open	Short
Open	Open
Normal	Normal
	Short Open Normal Normal Short Short Open Open

I vs. R_d for different values of R_{f1} , and R_{f2} :



• The appropriate range of R_d for fault tolerance has to be selected such that

$$I(R_{d,\min},R_{f1},R_{f2}) \in [0.5,4]$$
 (A), $I(R_{d,\max},R_{f1},R_{f2}) \in [0.5,4]$ (A)

for all the considered fault conditions.

• Design range for R_d will be:

$$R_d \in [5.5, 8.5] \ (\Omega)$$

Control Systems

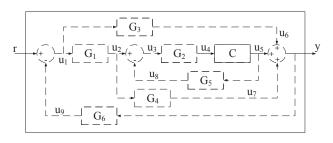
Consider a general unknown complex linear control system:

Problem: How can one synthesize a controller, at a specific location of an unknown complex system, such that desired stability margins and performance specifications can be attained?

S. P. Bhattacharyya Linear Systems 87 / 104

A. Datta et al. "Towards Data Based Adaptive Control". In: International Journal of Adaptive Control and Signal Processing 27.1-2 (2013), pp. 122–135.

Introduce a new controller C at an arbitrary location:



◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ か Q (^*)

Results

Theorem 15

Let H denote the frequency response between any two arbitrary loop-breaking points of an unknown linear control system, and C represent a design controller at an arbitrary location, then

$$H = \frac{\alpha_0 + \alpha_1 C}{1 + \beta C} \tag{82}$$

where α_0, α_1 and β are complex quantities.

To determine α_0, α_1 and β : Connect 3 stabilizing controllers, C^1, C^2 and C^3 , in the system, measure $H(j\omega)$ at a finite set of frequencies $\omega_k, \ k=1,2,\ldots,N$, and solve:

$$\begin{bmatrix} 1 & C^{1}(j\omega_{k}) & -H^{1}(j\omega_{k})C^{1}(j\omega_{k}) \\ 1 & C^{2}(j\omega_{k}) & -H^{2}(j\omega_{k})C^{2}(j\omega_{k}) \\ 1 & C^{3}(j\omega_{k}) & -H^{3}(j\omega_{k})C^{3}(j\omega_{k}) \end{bmatrix} \begin{bmatrix} \alpha_{0}(j\omega_{k}) \\ \alpha_{1}(j\omega_{k}) \\ \beta(j\omega_{k}) \end{bmatrix} = \begin{bmatrix} H^{1}(j\omega_{k}) \\ H^{2}(j\omega_{k}) \\ H^{3}(j\omega_{k}) \end{bmatrix}$$
(83)

at each frequency ω_k , $k = 1, 2, \dots, N$.

S. P. Bhattacharvya Linear Systems 89 / 104

Theorem 15 can be generalized to the case where two controllers involve:

Theorem 16

Let H denote the frequency response between any two arbitrary loop-breaking points of an unknown linear control system. Suppose that C_1 and C_2 are two design controllers at arbitrary locations. Then

$$H = \frac{\alpha_0 + \alpha_1 C_1 + \alpha_2 C_2 + \alpha_3 C_1 C_2}{1 + \beta_1 C_1 + \beta_2 C_2 + \beta_3 C_1 C_2},$$
(84)

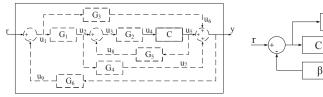
where α 's and β 's are complex quantities.

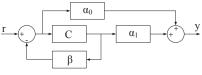
Realization of the Rational Multilinear Functions

Realization of

$$H = \frac{\alpha_0 + \alpha_1 C}{1 + \beta C} \tag{85}$$

is an equivalent single-loop representation of the original unknown system:





- $\alpha_0, \alpha_1, \beta$: can be determined from measurements
- β : equivalent plant of the original unknown system
- Stability margins of the original unknown complex system can be assessed from $\beta(j\omega)$

S. P. Bhattacharyya Linear Systems 91 / 104

D. N. Mohsenizadeh, L. H. Keel, and S. P. Bhattacharyya. "An Equivalent Plant Representation for Unknown Control Systems". In: 7th ASME Dynamic Systems and Control Conf. San Antonio, TX, 2014.

- Knowledge of one stabilizing controller suffices to find p^+ and z^+ , the number of RHP poles and zeros of the (equivalent) plant.
- Any given controller can then be checked for stability: if $C(j\omega)$ and $\beta(j\omega)$ satisfy certain conditions at a set of specific frequencies, stability is guaranteed.

Control Design Problem: Design a stabilizing controller *C* such that a desired set of stability margins can be attained.

Approach:

- Based on the desired stability margins, define: $H^*(j\omega)$
- Perform measurements, find α 's and β 's, and solve (85) for $C(j\omega)$:

$$C(j\omega) = \frac{H^*(j\omega) - \alpha_0(j\omega)}{\alpha_1(j\omega) - H^*(j\omega)\beta(j\omega)}$$
(86)

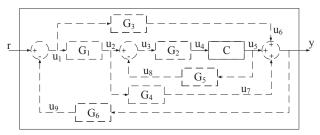
S. P. Bhattacharyya Linear Systems 92 / 104

S. P. Bhattacharyya, A. Datta, and L. H. Keel. *Linear Control Theory: Structure, Robustness, and Optimization*. CRC Press, Boca Raton, FL, 2009.

L. H. Keel and S. P. Bhattacharyya. "A Bode Plot Characterization of All Stabilizing Controllers". In: *IEEE Transactions on Automatic Control* 55.11 (2010), ppg 2650g 2654g

Example: A Controller Design

Consider the following unknown complex control system:

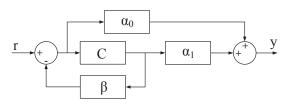


- What are the stability margins of the system?
- Design a controller to satisfy the followings for closed-loop system:

$$GM = Inf$$
 $PM > 60 deg$
 $Bandwidth > 10 rad/sec$ (87)

S. P. Bhattacharyya Linear Systems 93 / 104

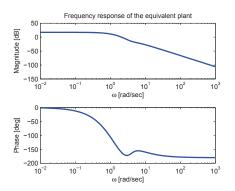
The equivalent single-loop system of the original system:



To find $\alpha_0(j\omega), \alpha_1(j\omega)$ and $\beta(j\omega)$ we connected the following 3 stabilizing PID controllers to the system and measured $H(j\omega)$, between r and y. Then we solved (83) for $\alpha_0(j\omega), \alpha_1(j\omega)$ and $\beta(j\omega)$.

$$C^{1}(s) = \frac{s^{2} + 9s + 8}{s}, \quad C^{2}(s) = \frac{2s^{2} + 8s + 1}{s}, \quad C^{3}(s) = \frac{s^{2} + 2s + 1}{s}$$

$\beta(j\omega)$: the frequency response of the equivalent plant

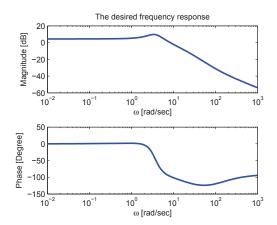


Stability margins and bandwidth of the original system:

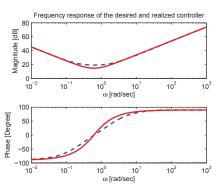
$$\mathsf{GM} = \mathsf{Inf}$$
 $\mathsf{PM} = \mathsf{20} \mathsf{ deg}$ $\mathsf{Bandwidth} = \mathsf{2.4} \mathsf{ rad/sec}$

(88)

- ullet The problem is to design C so that the desired specifications are met.
- Define $H^*(j\omega)$ which meets the specifications (plotted below)



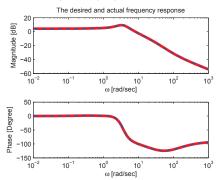
Replacing $\alpha_0(j\omega), \alpha_1(j\omega), \beta(j\omega)$ and $H^*(j\omega)$ into (86), one finds $C^*(j\omega)$ (dashed lines):



 $C^*(j\omega)$ can be realized by a transfer function representation, $C^r(s)$, using system identification methods (freq response of C^r is shown by solid lines)

$$C^{r}(s) = \frac{5s^2 + 5.6s + 1.9}{s} \tag{89}$$

Embedding C^r in the original system we obtained the frequency response between r and y (solid lines). $H^*(j\omega)$ is also shown by dashed lines.



The new stability margins and bandwidth using C^r :

$$\mathsf{GM} = \mathsf{Inf}$$
 $\mathsf{PM} = 83 \mathsf{ deg}$ $\mathsf{Bandwidth} = 10.8 \mathsf{ rad/sec}$

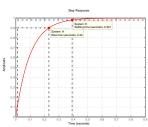
d/sec (90)

98 / 104

Experimental PI Controller Design

Problem: Design a PI controller for the following unknown servo motor so that the motor speed response to a step input has:

$$t_r = 0.22 \text{ sec}, \quad t_s = 0.4 \text{ sec}$$



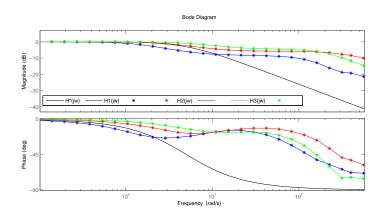
• Define a desired closed loop frequency response:

$$H^*(j\omega) = \frac{1}{\tau j\omega + 1}, \quad \tau = 0.1 \tag{91}$$

S. P. Bhattacharyya Linear Systems 99 / 104

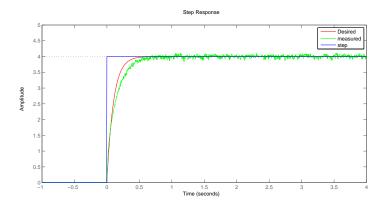
• Connect 3 controllers and measure the closed loop frequency response.

$$C_1(s) = \frac{0.5s + 2}{s}, \quad C_2(s) = \frac{0.8s + 6}{s}, \quad C_3(s) = \frac{s + 12}{s}$$



- Calculate $\alpha_0(j\omega), \alpha_1(j\omega)$ and $\beta(j\omega)$
- Find $C^*(j\omega)$ and realize it by a PI transfer function to get:

$$C^r(s) = \frac{0.2s + 4.477}{s}$$



S. P. Bhattacharyya

Current Research

The proposed method can be applied to a broad range of problems in engineering and science, such as

- Power distribution networks
- Bioinformatics and biological systems
- Distributed network of multi-agent systems

These topics are currently under research.

S. P. Bhattacharyya Linear Systems 102 / 104

D. N. Mohsenizadeh et al. "A New Measurement Based Approach to the Study of Biological Systems". In: 6th International Symposium on Communications, Control and Signal Processing. Athens, Greece, 2014, pp. 48–52.

Conclusions

- We generalized the Thevenin's Theorem.
- In unknown linear systems, the functional dependency of any system variable on any set of the design elements, at arbitrary locations of the system, can be determined by a small number of measurements.
- The obtained functional dependency can be used to solve design problems.
- For control systems, an equivalent single-loop representation of a general unknown complex system can be found. The stability margins can be evaluated and a controller design can be accomplished.
- For interval linear systems (with parameters with rank one dependency), the extremal values of system variables occur at the vertices of the box in the parameter space.
- Fault-tolerant system design can be achieved using our proposed approach and based on a small set of measurements.

Thank you