Maxim Balashov

Moscow Institute of Physics and Technology

balashov73@mail.ru

The Clarkson-Polyak modulus of convexity and its applications

15 - 05 - 2015

J. A. Clarkson, 1936

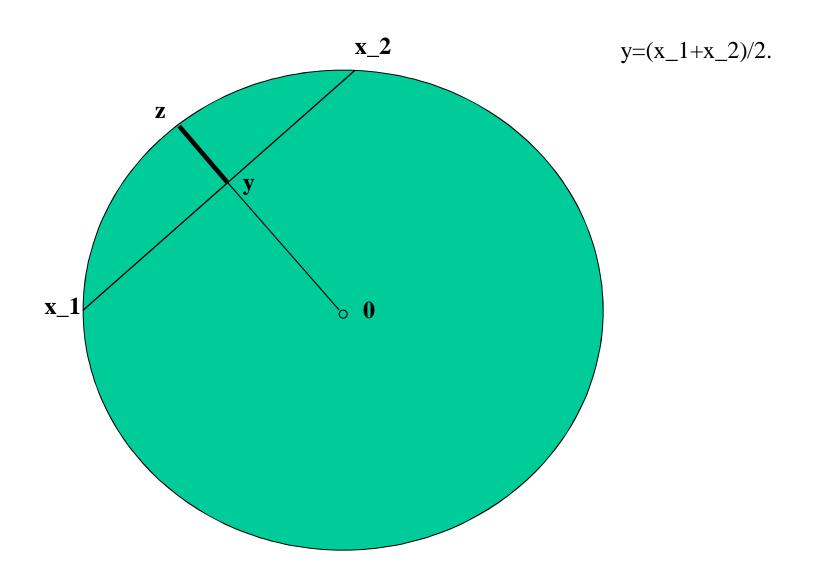
Let X be a real Banach space and $B_r(x)$ be the closed ball with center $x \in X$ and radius r > 0.

In 1936 J. A. Clarkson introduced the modulus of convexity for the space X by the formula

$$\delta_X : [0, 2] \to [0, 1],$$

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x_1 + x_2}{2} \right\| : \\ \forall x_1, x_2 \in B_1(0), \|x_1 - x_2\| = \varepsilon \right\}$$

A Banach space X is called uniformly convex if $\delta_X(\varepsilon) > 0$ for all permissible $\varepsilon > 0$. This concept led to the development of the theory of uniformly convex spaces.



B. T. Polyak, 1966

B. T. Polyak introduced the concept of modulus of convexity for an arbitrary convex closed bounded subset $A \subset X$. The modulus of convexity is the function

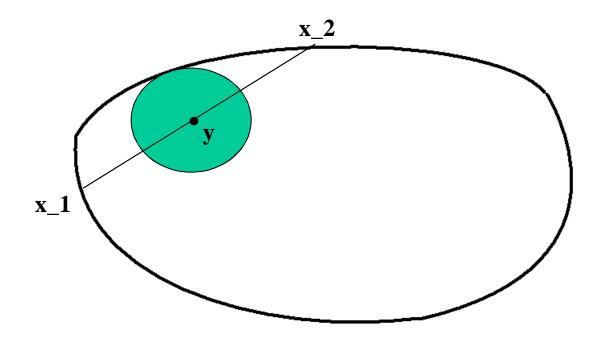
$$\delta_A: (0, \operatorname{diam} A) \to [0, +\infty)$$

and it is defined as

$$\delta_A(\varepsilon) = \sup \left\{ \delta \ge 0 : B_\delta\left(\frac{x_1 + x_2}{2}\right) \subset A, \\ \forall x_1, x_2 \in A : \|x_1 - x_2\| = \varepsilon \right\}$$

It is easy to see that in the case $A = B_1(0)$ we have $\delta_A(\varepsilon) = \delta_X(\varepsilon)$, for all $\varepsilon \in [0, 2]$.

 $y=(x_1+x_2)/2.$



The concept of B. T. Polyak appeared to be very useful in the field of optimization, for estimate of the rate of convergence for minimization sequences.

$$\min_{x \in A} f(x),$$

where the set A is uniformly convex. Then there exists C > 0 with

$$||x_k - x_*|| \le C \cdot \delta_A^{-1} (|f(x_k) - f(x_*)|).$$

In approximation theory, mainly for the question of stability of functionals.

$$\min_{x \in A} f(x),\tag{1}$$

$$\min_{x \in B} f(x),\tag{2}$$

and the set A is uniformly convex with the modulus δ_A . Let a and b be solutions of the problems (1) and (2), respectively. Then there exists C > 0 with

$$||a - b|| \le C \cdot \delta_A^{-1} (h(A, B)).$$

1 Strongly convex set of radius R. Dual description.

A nonempty set $A \subset X$ is strongly convex of radius R > 0 if

$$A = \bigcap_{x \in B} B_R(x), \qquad B \subset X.$$

Let X be a real Hilbert space. Then

$$\delta_{A}(\varepsilon) \geq R\delta_{X} \left(\frac{\varepsilon}{R}\right) =$$

$$= R \left(1 - \sqrt{1 - \frac{\varepsilon^{2}}{4R^{2}}}\right) \sim \frac{\varepsilon^{2}}{8R}, \varepsilon \to 0.$$

Theorem 1 Let X be a real Hilbert space. Suppose that a nonempty closed convex subset $A \subset X$ is uniformly convex with the modulus of convexity of the second order at zero: there exists C > 0 such that

$$\delta_A(\varepsilon) = C\varepsilon^2 + o(\varepsilon^2), \quad \varepsilon \to +0.$$

Then there exists a subset $B \subset X$ such that

$$A = \bigcap_{x \in B} \left(x + \frac{1}{8C} B_1(0) \right),$$

and $\frac{1}{8C}$ is sharp in the sense that for any $r < \frac{1}{8C}$ and any subset $C \subset X$,

$$A \neq \bigcap_{x \in C} B_r(x).$$

2 Approximations of strictly convex compacta in \mathbb{R}^n .

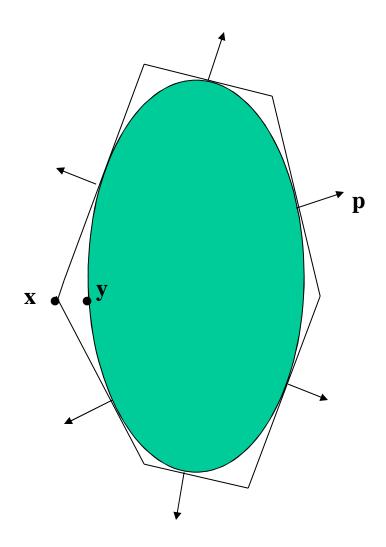
The supporting function of the subset $A \subset \mathbb{R}^n$ is defined as follows

$$s(p, A) = \sup_{x \in A} (p, x), \quad \forall p \in \mathbb{R}^n.$$

We shall consider external polyhedral approximation of a convex compact $A \subset \mathbb{R}^n$ on the grid \mathbb{G}

$$\hat{A} = \{ x \in \mathbb{R}^n \mid (p, x) \le s(p, A), \quad \forall p \in \mathbb{G} \}.$$

$$h(A, \hat{A}) = \sup_{\|p\|=1} (s(p, \hat{A}) - s(p, A)).$$



Theorem 2 Let $A \subset \mathbb{R}^n$ be a convex compact set with the modulus of convexity $\delta_A(\varepsilon)$, $\varepsilon \in [0, \operatorname{diam} A]$. Let \mathbb{G} be a grid with the step $\Delta \in (0, \frac{1}{2})$ and $\frac{\delta_A(\operatorname{diam} A)}{\operatorname{diam} A} > \frac{\Delta}{4-\Delta^2}$. Then

$$h(A, \hat{A}) \le \frac{8}{7}\varepsilon(\Delta)\Delta,$$

where $\varepsilon(\Delta)$ is a solution of the equation $\frac{\delta_A(\varepsilon)}{\varepsilon} = \frac{\Delta}{4-\Lambda^2}$.

Thank you!