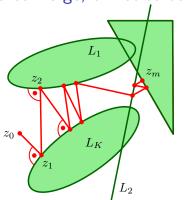
Convergence of Products of Orthogonal Projections

EVA KOPECKÁ

University of Innsbruck Austria To converge, or not to converge, that is the question:



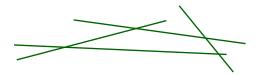
K fixed, e.g. K=5 $L_1, L_2, \ldots, L_K \subset \mathbb{R}^d$ or ℓ_2 closed convex sets

 $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ be arbitrary $\mathbf{z}_n = P_{k_n} \mathbf{z}_{n-1}$ sequence of projections

DO THE ITERATES CONVERGE?

≡ stay bounded, converge weakly, or converge in norm?

Affine subspaces



 L_1, L_2, \dots, L_K closed affine subspaces of a Hilbert space H $z_n = P_{k_n} z_{n-1}$ iterates of orthonormal projections of a point z

In \mathbb{R}^d , the sequence $\{z_n\}$ is always bounded. [Aharoni, Duchet, Wajnryb '84], [Meshulam '96]

In ℓ_2 , there exist two closed affine subspaces L_1 , L_2 and a sequence $\{z_n\}$ of iterates of nearest point projections which is *not* bounded. [Bauschke, Borwein '94]

Proof: Take two closed subspaces the sum of which is not closed, and translate one of them.

Linear subspaces

 L_1, L_2, \dots, L_K closed subspaces of a Hilbert space H $z_n = P_{k_n} z_{n-1}$ iterates of orthonormal projections of a point z

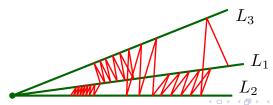
If $H = \mathbb{R}^d$, then $\{z_n\}$ converges. [Práger '60]

If $H = \ell_2$, then $\{z_n\}$ converges *weakly*. [Amemiya, Ando '65] $(\sum_{1}^{N} z_n)/N$ converges in norm for almost all $\{k_n\} \in \{1, \dots, K\}^{\mathbb{N}}$.

If $L_1, L_2 \subset \ell_2$, then $\{z_n\}$ converges in norm. [von Neumann '49]

ASSUME $L_1, \ldots, L_K \subset \ell_2$. DOES $\{z_n\}$ CONVERGE IN NORM???

Yes, if the iterates are (quasi)periodic e.g. $P_1P_2P_3P_1P_2P_3...$ [Halperin '62], [Sakai '95]



Projections on 3 subspaces do not have to converge

Let H be an infinite dimensional Hilbert space.

There exist 5 closed subspaces L_1, L_2, L_3, L_4, L_5 of H and a sequence $z_n = P_{k_n} z_{n-1}$ of iterates of orthonormal projections of a point z on L_1, L_2, L_3, L_4, L_5 which converges weakly but does not converge in norm. [Adam Paszkiewicz, 2012]

There exist 3 closed subspaces L_1 , L_2 , L_3 of H and a sequence $z_n = P_{k_n} z_{n-1}$ of iterates of orthonormal projections of a point z on L_1 , L_2 , L_3 which converges weakly but does not converge in norm. [Eva Kopecká & Vladimír Müller, 2013]

If L_1, L_2 are closed subspaces of H, then any sequence $\{z_n\}$ of projections on L_1, L_2 converges in norm. [John von Neumann 1949]

Convex sets

closed and convex $C_1, C_2, \dots, C_K \subset H$ $\bigcap C_i \neq \emptyset$

 $z_n = P_{k_n} z_{n-1}$ iterates of the nearest point projections of a point z

If $H = \mathbb{R}^d$ then $\{z_n\}$ converges. [Dye, Kuczumow, Lin, Reich '96]

If K = 3 and $H = \ell_2$ then $\{z_n\}$ converges weakly.

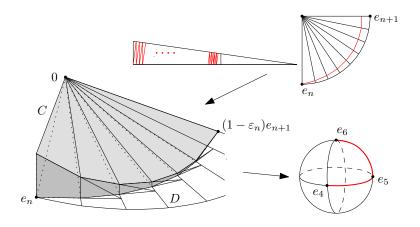
[Bruck '82], [Dye, Reich '92]

For K = 4 this is not known!

If $H = \ell_2$, then every sequence $\{z_n\}$ of *periodic* iterates converges weakly. [Bregman '65]

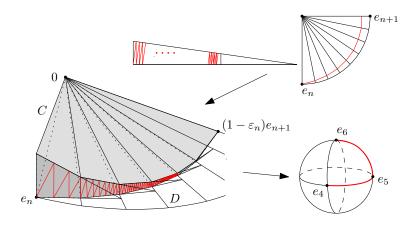
There exist $C, D \subset \ell_2$ closed and convex with $0 \in C \cap D$, and a sequence $\{z_n\}$ of iterates of nearest point projections on these sets which converges weakly but *not* in norm. [Hundal '04]

No norm-convergence in ℓ_2 already for 2 convex sets



In ℓ_2 there exist a closed convex set C, a hyperplane D, with $0 \in C \cap D$, and a point z so that the iterates $(P_C P_D)^n z$ do not converge in norm. The iterates approximately contain an ON sequence $\{e_n\}$.

No norm-convergence in ℓ_2 already for 2 convex sets



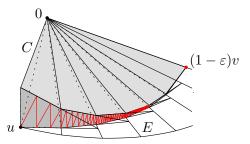
In ℓ_2 there exist a closed convex set C, a hyperplane D, with $0 \in C \cap D$, and a point z so that the iterates $(P_C P_D)^n z$ do not converge in norm. The iterates approximately contain an ON sequence $\{e_n\}$.

From a convex to a linear counterexample

Let u and v be orthonormal, E be the span of u and v, $\varepsilon > 0$.

[Hundal] There exists a convex cone $C \subset \mathbb{R}^3$ and a product φ of nearest point projections onto C and E so that

$$|\varphi(C,E)(u)-v|<\varepsilon.$$



[Paszkiewicz] There exist subspaces X and Y of \mathbb{R}^d and a product φ of projections onto X, Y and E so that

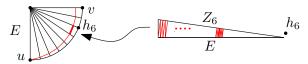
$$|\varphi(X,Y,E)(u)-v|<\varepsilon.$$

From u to v via 3 linear subspaces of \mathbb{R}^d

Let u and v be orthonormal, E be the span of u and v, $\varepsilon > 0$.

There exist subspaces $Z_1 \subset Z_2 \subset \cdots \subset Z_k$, dim $Z_j = j+1$ and a product φ of projections on these spaces and on E so that

$$|\varphi(Z_1,\ldots,Z_k,E)(u)-v|<\varepsilon.$$



Suppose $Z_1 \subset Z_2 \subset \cdots \subset Z_k = X$ are subspaces of \mathbb{R}^d . There is a subspace $Y \approx X$ and $m_1 > m_2 > \cdots > m_k$ so that for all $j = 1, \ldots, k$ $\|(P_X P_Y P_X)^{m_j} - P_{Z_j}\| < \varepsilon$.

Corollary: There exist subspaces X and Y and a product φ of projections onto X, Y and E so that

$$|\varphi(X, Y, E)(u) - v| < \varepsilon.$$

Iterates of 1 point (and of points near to it) diverge

Let *H* be an infinite dimensional Hilbert space.

There exist 2 closed and convex sets $C, D \subset \ell_2$ with $0 \in C \cap D$, and a sequence of iterates of nearest point projections of a point z on these sets which does not converge in norm, since it approximately contains an ON sequence.

[Hein Hundal 2004]

There exist 5 closed subspaces $E, X_{even}, X_{odd}, Y_{even}, Y_{odd}$ of H and a sequence of iterates of orthonormal projections of a point z on these spaces which does not converge in norm, since it approximately contains an ON sequence.

[Adam Paszkiewicz, 2012]

There exist 3 closed subspaces E, X, Y of H and a sequence of iterates of orthonormal projections of a point z on these spaces which does not converge in norm, since it approximately contains an ON sequence.

[Eva Kopecká & Vladimír Müller, 2013]

Iterates of ALL points diverge

Let H be an infinite dimensional Hilbert space.

There exist 3 closed subspaces X_1, X_2, X_3 with the following property. For every $0 \neq w_0 \in H$ there is a sequence $k_1, k_2, \dots \in \{1, 2, 3\}$ so that the sequence of iterates defined by $w_n = P_{X_{k_n}} w_{n-1}$ does not converge in norm.

When projecting on 5 closed subspaces this can be achieved using just 2 fixed sequences of indices:

There exists a sequence $k_1, k_2, \dots \in \{1, 2, 3\}$ with the following property. Every infinite dimensional Hilbert space H has closed subspaces X, Y, X_1, X_2, X_3 so that if $0 \neq z \in H$, and $u_0 = P_X z$, $v_0 = P_X P_Y z$, then at least one of the sequences of iterates $\{u_n\}_{n=1}^\infty$ or $\{v_n\}_{n=1}^\infty$ defined by $u_n = P_{X_{k_n}} u_{n-1}$, $v_n = P_{X_{k_n}} v_{n-1}$ does not converge in norm.

[Kopecká & Paszkiewicz, 2015]

3 subspaces: from 1 bad point to all points bad

Let H be an infinite dimensional Hilbert space, and $X_1, X_2, X_3 \subset H$ be 3 of its closed subspaces. Let Z be the set of good points in H, that is of all $z_0 \in H$ so that for every sequence $j_1, j_2, \dots \in \{1, 2, 3\}$ the sequence defined by $z_n = P_{X_{j_n}} z_{n-1}$ does converge in norm. Then Z is a closed subspace.

ASSUME $Z \neq H$

Then $L=Z^{\perp}$ is an infinite dimensional subspace of H, and in L all points are bad w.r.t. the spaces $\tilde{X}_i=L\cap X_i,\ i=1,2,3$, that is:

For every $0 \neq w_0 \in L$ there is a sequence $k_1, k_2, \dots \in \{1, 2, 3\}$ so that the sequence of iterates defined by $w_n = P_{\tilde{X}_{k_n}} w_{n-1}$ does not converge in norm.

5 subspaces: from 1 bad point to all points bad

Fix $k_1, k_2, \dots \in \{1, 2, 3\}$ with the following property: Every infinite dimensional (separable) Hilbert space H^m contains a point $z_0^m \in H$ and closed subspaces X_1^m, X_2^m, X_3^m so that the sequence $z_n^m = P_{X_{k_n}} z_{n-1}^m$ diverges.

DEFINE:

$$H = H^{1} \oplus_{2} H^{2} \oplus_{2} H^{3} \oplus \dots$$

$$X_{i} = X_{i}^{1} \oplus_{2} X_{i}^{2} \oplus_{2} X_{i}^{3} \oplus \dots \quad i = 1, 2, 3$$

$$X = \overline{\operatorname{span}} \{z^{1}, z^{2}, z^{3}, \dots\}$$

$$Y = (X + X^{\perp})/2.$$

THEN:

If $0 \neq z \in H$, and $u_0 = P_X z$, $v_0 = P_X P_Y z$, then at least one of the sequences of iterates $\{u_n\}_{n=1}^{\infty}$ or $\{v_n\}_{n=1}^{\infty}$ defined by $u_n = P_{X_{k_n}} u_{n-1}$, $v_n = P_{X_{k_n}} v_{n-1}$ diverges.

Projections on 3 subspaces do not have to converge

Let *H* be an infinite dimensional Hilbert space.

There exist 3 closed subspaces X_1, X_2, X_3 with the following property:

For every $0 \neq w_0 \in H$ there is a sequence $k_1, k_2, \dots \in \{1, 2, 3\}$ so that the sequence of iterates defined by $w_n = P_{X_{k_n}} w_{n-1}$ converges weakly but does not converge in norm.

Simple condition implying convergence

 L_1, L_2, \dots, L_K closed subspaces of a Hilbert space H $z_n = P_{k_n} z_{n-1}$ iterates of orthoprojections of a point z

Lemma

The sequence $\{|z_n|\}$ is decreasing, hence convergent.

Lemma

Suppose there is c > 0, so that $|z_j - z_k|^2 \le c(|z_j|^2 - |z_k|^2)$, for all $j \le k$. Then $\{z_n\}$ converges in norm.

Proof.

If j < k are large, then $|z_j - z_k|^2 \le c(|z_j|^2 - |z_k|^2) < \varepsilon$ since $\{|z_n|\}$ is Cauchy. $\Rightarrow \{z_n\}$ is Cauchy $\Rightarrow \{z_n\}$ converges

Finite (co)-dimension \Rightarrow convergence

 L_1, L_2, \ldots, L_K closed subspaces of a Hilbert space H of finite dimension or codimension $z_n = P_{k_n} z_{n-1}$ iterations of orthoprojections of a point z

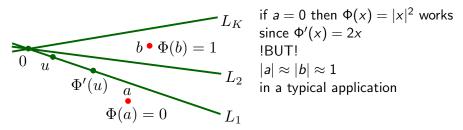
Theorem

For all $j \leq k$,

$$|z_j-z_k|^2 \leq c(|z_j|^2-|z_k|^2),$$

where the constant c = c(K, d) > 0 depends on the number K of the spaces and their maximal dimension or codimension d (for each space we choose the one which is finite) only. Consequently, the sequence $\{z_n\}$ converges in norm.

Smooth separation theorem



Theorem (Kirchheim, Kopecká, Stefan Müller, 2011)

Let L_1, L_2, \ldots, L_K be subspaces of \mathbb{R}^d and let $a, b \in \mathbb{R}^d$ be two points. There exists a differentiable function $\Phi : \mathbb{R}^d \to \mathbb{R}$, so that

- (i) $\Phi(b) \Phi(a) = |b a|^2$;
- (ii) $\Phi'(L_i) \subset L_i$ for $i = 1, \ldots, K$;
- (iii) the mapping $\Phi': \mathbb{R}^d \to \mathbb{R}^d$ is Lipschitz with a constant c depending on K and d only.

Proof: involved application of Whitney's theorem on extending of functions and their derivatives.

Corollary

Let w = b - a and $F : \mathbb{R}^d \to \mathbb{R}$ be the function defined by $F(x) = \langle w, x \rangle - \Phi(x)$ for $x \in \mathbb{R}^d$. Then F(b) - F(a) = 0, $F' = w - \Phi'$, and if $i \in \{1, ..., K\}$, then

$$\langle w, v \rangle \leq \langle F'(x), v \rangle + c \operatorname{dist}(x, L_i),$$

for any $x \in \mathbb{R}^d$ and v orthogonal to L_i , with |v| = 1.

Proof.

For a given *i*, let \tilde{x} be the orthogonal projection of x onto L_i . Then $\langle \Phi'(\tilde{x}), \nu \rangle = 0$ and since Φ' is c-Lipschitz,

$$\begin{aligned} |\langle w - F'(x), v \rangle| &= |\langle \Phi'(x), v \rangle| = |\langle \Phi'(x) - \Phi'(\tilde{x}), v \rangle| \le |\Phi'(x) - \Phi'(\tilde{x})| \\ &\le c|x - \tilde{x}| = c \operatorname{dist}(x, L_i). \end{aligned}$$

Smooth separation \Rightarrow projections converge

Let L_1, L_2, \ldots, L_K be closed subspaces of a Hilbert space X. Suppose for every $a, b \in X$ there exists a differentiable function $\Phi: X \to \mathbb{R}$, so that

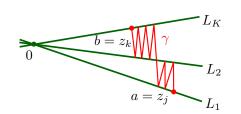
- (i) $\Phi(b) \Phi(a) = |b a|^2$;
- (ii) if $x \in L_i$ then $\Phi'(x) \in L_i$;
- (iii) the mapping $\Phi':\mathbb{R}^d o \mathbb{R}^d$ is Lipschitz with a constant c.

Then for every sequence $\{z_n\}$ of projections on the sets L_1,\ldots,L_K

$$|z_j-z_k|^2 \le c(|z_j|^2-|z_k|^2),$$

if j < k. Consequently, the sequence $\{z_n\}$ converges in norm.

Heuristics: smooth separation \rightarrow rate of convergence



curve $\gamma:[0,s]\to\mathbb{R}^d$ connects via the iterates z_n $\gamma(0) = a = z_i$ with $\gamma(s) = b = z_k$ γ replaces the direct connection w = b - a

$$|z_{j} - z_{k}|^{2} = \langle w, \gamma(s) - \gamma(0) \rangle \qquad \langle \Phi'(\gamma(t)), \gamma'(t) \rangle \approx 0$$

$$= \int_{0}^{s} \langle w, \gamma'(t) \rangle dt$$

$$\approx \int_{0}^{s} \langle w - \Phi'(\gamma(t)), \gamma'(t) \rangle dt$$

$$= \langle w, b \rangle - \Phi(b) - (\langle w, a \rangle - \Phi(a))$$

$$= \langle w, b - a \rangle - |b - a|^{2} = 0$$

$$\Phi'(L_{i}) \subset L$$

(We didn't mention the error of order $c \sum |z_{i+1} - z_i|^2 = c(|z_i|^2 - |z_k|^2).$

smooth separation \rightarrow rate of convergence

$$|z_{j} - z_{m}|^{2} = \langle w, b - a \rangle = \langle w, \gamma(s) - \gamma(0) \rangle = \int_{0}^{s} \langle w, \gamma'(t) \rangle dt$$

$$= \sum_{i=j}^{m-1} \int_{s_{i}}^{s_{i+1}} \langle w, v_{i} \rangle dt$$

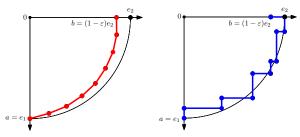
$$\leq \sum_{i=j}^{m-1} \int_{s_{i}}^{s_{i+1}} \langle F'(\gamma(t)), \gamma'(t) \rangle dt + c \sum_{i=j}^{m-1} \int_{s_{i}}^{s_{i+1}} s_{i+1} - t dt$$

$$= \sum_{i=j}^{m-1} F(z_{i+1}) - F(z_{i}) + c \sum_{i=j}^{m-1} \int_{0}^{s_{i+1}-s_{i}} t dt$$

$$= F(z_{m}) - F(z_{1}) + c/2 \sum_{i=j}^{m-1} (s_{i+1} - s_{i})^{2} = C \sum_{i=j}^{m-1} |z_{i+1} - z_{i}|^{2}$$

$$= C(|z_{i}|^{2} - |z_{m}|^{2})$$

Monotone curves with only few different derivatives do *not* connect distant points of the sphere.



Assume $\gamma:[0,s]\to\ell_2$ is an absolutely continuous curve with endpoints a and b so that

- (i) the distance $|\gamma(t)|$ from the origin is a decreasing function of t on [0,s], and
- (ii) $\gamma'(t)$ takes on at most K different values for almost all $t \in [0, s]$.

Then $|a-b|^2 \le c(|a|^2-|b|^2)$. c=c(K)>0 depends only on the number K of the different derivatives of γ .