SEQUENTIAL ESTIMATION OF A RANDOM WALK FIRST-PASSAGE TIME FROM CORRELATED OBSERVATIONS

Marat V. Burnashev

Institute for Information Transmission Problems,
Russian Academy of Sciences, Moscow, Russia
Aslan Tchamkerten
Telecom ParisTech, France

Based on:

- 1. M.V. Burnashev, A.Tchamkerten, "Sequential Estimation of a Threshold Crossing Moment for a Gaussian Random Walk through Correlated Observations", Probl. of Inform. Trans., 48, no. 2, pp. 65-78, 2012.
- 2. M.V. Burnashev, A.Tchamkerten, "Estimating a Random Walk First-Passage Time from Noisy or Delayed Observations", IEEE Trans. on Inform. Theory, 58, no. 7, pp. 4230-4243, 2012.

1. Problem statement

• Consider the discrete time random process $X = \{X_n\}$

$$X: X_0 = 0, X_n = sn + \sum_{i=1}^n V_i, n \ge 1,$$

 $\{V_i\}$ - indep. $\mathcal{N}(0,1)$ -Gaussian r.v.'s, s>0 - given.

• For given threshold level A > 0 consider first-passage time

$$\tau_A = \min\{n \ge 0 : X_n \ge A\}.$$

- We can not observe process X directly.
- We observe another rand, process $Y = \{Y_n\}$.
- Based on observations Y we want to estimate moment τ_A using stopping time η over Y (based on Y_1, Y_2, \ldots).
- estimate η Markov stopping time wrt Y: for any n event $\{\eta = n\}$ is defined by observations Y_1, \ldots, Y_n (i.e. $\{\eta = n\} \in \mathcal{F}(Y_1, \ldots, Y_n)$).
- We want to find the value

$$\mathbf{E}|\eta - \tau_A|^p \Longrightarrow \inf_n, \qquad p > 0$$

Probably, that kind of problem statement (i.e. to estimate a stopping time τ of X from correlated observations Y) appeared first in [Niesen, Tchamkerten, 2009].

Also in [Niesen, Tchamkerten, 2009] a number of possible applications are described (communications, finance, economy, etc.).

Example. $X = \{X_t\}$ represents objective price of some shares. For optimal investment we need to know moment τ_A for some A > 0. On stock market we can observe only Y = corrupted version of X (due to human factors, delays, etc.).

Based on observations Y we should estimate the moment τ_A .

• We consider two types of observation process $Y = \{Y_n\}$:

Noisy observations and Delayed observations.

• Noisy observations. Observation process Y has form

$$Y: Y_0 = 0, Y_n = X_n + \varepsilon \sum_{i=1}^n W_i, n \ge 1,$$

 $\{W_i\}$ - indep. $\mathcal{N}(0,1)$ - r.v.'s (indep. on $\{V_i\}$), $\varepsilon>0$ - given.

• For given A and estimate η introduce function

$$q(A, p, \eta) = \mathbf{E}|\eta - \tau_A|^p$$
.

• We are interested in minimal possible function q(A, p)

$$q(A, p) = \inf_{\eta} \mathbf{E} |\eta - \tau_A|^p,$$

inf – over all stopping times η wrt Y.

 \Rightarrow Investigate asymptotics: s, ε – fixed and $A \to \infty$.

ullet **Delayed observations**. We are given fixed delay d=d(A)>0 and Y has form

$$Y: Y_0 = Y_1 = \ldots = Y_d = 0; Y_n = X_{n-d}, n \ge d+1.$$

Introduce functions

$$q(A, p, d, \eta) = \mathbf{E}|\eta - \tau_A|^p,$$

and

$$q(A, p, d) = \inf_{\eta} q(A, p, d, \eta),$$

inf – over all stopping times η wrt Y.

- \Rightarrow Investigate asymptotics: s fixed and $d, A \to \infty$.
- That problem example of traditional estimation problems:
- \bullet In observation space Y we are given probab. distributions

$$\{\mathbf{P}_{\theta}(y), \theta \in \Theta\},\$$

 θ - unknown parameter.

- Based on observations $\{Y_n\}$ we want to estimate parameter θ .
- But that problem has unpleasant features.

Standard methodology

in estimation theory (how solve problems)

• Consider likelihood ratio process (Radon-Nikodim derivative)

$$Z(n, u, \theta_0) = \ln \frac{d\mathbf{P}_{\theta_0+u}}{d\mathbf{P}_{\theta_0}} (Y_0^n),$$

 θ_0 – true parameter value, and $Y_0^n = \{Y_i, 0 \le i \le n\}$.

- Most of estimation problems are reduced to investigation of certain properties of random process $Z(n, u, \theta_0)$.
- In many cases process $Z(n, u, \theta_0)$ has convenient for investigation form (e.g. sum of indep. r.v.'s, stochastic integral, etc.).
- Here parameter $\theta = \text{Markov stopping time}$.
- \Rightarrow Process Z has non-convenient form ("Brownian bridge").

2. Main results

Introduce value

$$m_p = \mathbf{E}|\xi|^p = \frac{2^{p/2}}{\sqrt{\pi}}\Gamma\left(\frac{p+1}{2}\right), \qquad \xi \sim \mathcal{N}(0,1).$$

Noisy observations

Theorem 1. For any p > 0 the formula holds

$$q(A,p) = \left[\frac{\varepsilon^2 A}{s^3(1+\varepsilon^2)}\right]^{p/2} (m_p + o(1)), \qquad A \to \infty.$$

Also

Statement 1. For any p > 0 the lower bound holds $(A \to \infty)$

$$q(A, p) \ge \inf_{\eta(Y_0^{\infty})} \mathbf{E} |\eta - \tau_A|^p \ge \left[\frac{\varepsilon^2 A}{s^3 (1 + \varepsilon^2)} \right]^{p/2} (m_p + o(1)).$$

Note: inf is taken over all observation process Y_0^{∞} up to $n = \infty$.

Delayed observations

Theorem 2. For any p > 0 the formula holds

$$q(A, d, p) = \left(\frac{d(A)}{s^2}\right)^{p/2} (m_p + o(1)), \quad A, d \to \infty.$$

3. Why do we need $s \neq 0$?

Proposition 1. Assume that s=0. Then for any $A>0,\ \varepsilon>0$ and any $p\geq 1/2$

$$\inf_{\eta(Y_0^{\infty})} \mathbf{E} |\eta - \tau_A|^p = \infty.$$

4. Sketch of proofs

4.1. Theorem 1 - upper bound for q(A, p).

- Sufficient to choose good estimate η_A and evaluate $\mathbf{E}|\eta_A \tau_A|^p$. Most straightforward way:
- Construct reasonable estimates $\hat{X}_n = \hat{X}_n(Y_0^n), n > 0$ for $\{X_n\}$ and use estimate η_A

$$\eta_A = \min\{n : \hat{X}_n \ge A\}.$$

• Since all processes – Gaussian, use linear estimates

$$\hat{X}_n = s(1 - \alpha)n + \alpha Y_n,$$

where

$$\alpha = \frac{1}{1 + \varepsilon^2}.$$

• Then get

Statement 2. The difference $\eta_A - \tau_A$ can be represented as

$$\eta_A - \tau_A = \sqrt{\frac{\varepsilon^2 A}{s^3 (1 + \varepsilon^2)}} \left[1 + O\left(\sqrt{\frac{\ln A}{As}}\right) \right] \zeta + \xi_1,$$

where:

- 1) $\zeta \sim \mathcal{N}(0,1)$;
- 2) remaining term ξ_1 "small"; in particular,

$$\mathbf{E}|\xi_1|^p \le C(p)s^{-2p} \left[1 + (sA\ln A)^{p/4}\right], \quad p > 0.$$

From Statement 2 get upper bound (as $A \to \infty$)

$$q(A,p) \leq \mathbf{E}|\eta_A - \tau_A|^p = \left[\frac{\varepsilon^2 A}{s^3(1+\varepsilon^2)}\right]^{p/2} (m_p + o(1)).$$

4.1. Theorem 1 - lower bound for $\mathbf{E}|\eta - \tau_A|^p$.

- To get lower bound for $\mathbf{E}|\eta \tau_A|^p$ it is convenient to replace $\mathbf{E}|\eta \tau_A|^p$ by related inaccuracy $\mathbf{E}|\hat{X}_T X_T|^p$ when estimating X_T at fixed moment T.
- Note that $\mathbf{E}\tau_A \approx A/s$. Introduce fixed time moment T

$$T = \frac{A}{s} - ct_0, \qquad t_0 = \sqrt{\frac{2A \ln A}{s^3}}$$

with sufficiently large c > 0.

 \implies with high probability $\tau_A \in (T, T + 2ct_0)$, since

$$\mathbf{P}\left\{ \left| \tau_A - \frac{A}{s} \right| \ge ct_0 \right\} \lesssim A^{-c^2}.$$

• Replace observation process Y_n by "better" process Y'_n

$$Y'_n = \begin{cases} Y_n, & n \le T, \\ Y_T + X_n - X_T, & n \ge T, \end{cases}$$

i.e. for process $Y'_n, n > T$ additional observation noise $\varepsilon \sum_{i=T+1}^n W_i$ disappears after moment T.

- \Rightarrow Easier to evaluate τ_A based on $\{Y'_n\}$ than on $\{Y_n\}$.
- If $\tau_A > T \Rightarrow$ difficulty in estimating τ_A is equivalent to difficulty in estimating X_T . In particular, we have

$$\inf_{\eta(Y_0^{\infty})} \mathbf{E} |\eta - \tau_A|^p \ge \frac{1}{s^p} \inf_{\mu(Y_T)} \left[\mathbf{E} |\mu - X_T|^p; \tau_A > T \right] (1 + o(1)).$$

After some algebra get Statement 1. \square