One-day conference dedicated to the memory of academician A.A. Gonchar December 23, 2015, MIAN, Gubkina, 8, Moscow

Symmetrization of condensers and geometrical properties of multivalent functions

Vladimir Dubinin

Institute of Applied Mathematics Far-Eastern Branch of the Russian Academy of Sciences Vladivostok e-mail: dubinin@iam.dvo.ru

Covering theorem for univalent functions

S is the class of functions f analytic and univalent in the unit disk $U=\{z:|z|<1\}$, normalized by the conditions f(0)=0 and f'(0)=1. The leading example of a function of class S is the Koebe function

$$k(z) = z(1-z)^{-2} = z + 2z^2 + 3z^3 + \dots$$

Theorem(Koebe [1907], Bieberbach [1916]). The range of every function of class S contains the disk $\{w : |w| < 1/4\}$.

Two examples

$$f_1(z) = \frac{k(z)}{1 - \lambda k(z)} = z + a_2 z^2 + \dots;$$

 $f_1(z) \neq f_1(-1) = -\frac{1}{4 + \lambda}.$

$$f_2(z) = \frac{1 - (1 - z)^p}{p} = z + b_2 z^2 +;$$

 $f_2(z) \neq \frac{1}{p} \text{ for } z \in U.$

Multivalent functions

A function f in a domain G in the complex plane $\overline{\mathbb{C}}_z$ is said to be p-valent in G, $p=1,2,\ldots$, if it takes each complex value w at most p times in G.

Let a function f be meromorphic in the disk $U=\{z:|z|<1\}$ and distinct from a constant and let n(w,f) denote the number of roots of the equation f(z)=w in U. The function f is said to be circumferentially mean p-valent (c.m. p-valent) if for any $\rho>0$ the inequality

$$\frac{1}{2\pi}\int_{0}^{2\pi}n(\rho e^{i\varphi},f)d\varphi\leqslant p$$

holds.

Growth, distortion and covering theorem

Theorem(Hayman [1950]). Suppose that $f(z) = z^p + a_{p+1}z^{p+1} +$ is holomorphic c.m.p-valent in U. Then $|a_{p+1}| \le 2p$. Further we have for |z| = r (0 < r < 1)

$$\frac{r^p}{(1+r)^{2p}} \le |f(z)| \le \frac{r^p}{(1-r)^{2p}},$$

$$|f'(z)| \leq \frac{p(1+r)}{r(1-r)}|f(z)| \leq \frac{pr^{p-1}(1+r)}{(1-r)^{2p+1}}.$$

Finally the equation f(z) = w has exactly p roots in U if $|w| < 4^{-p}$.

• Functions with a zero of order p at the origin

- Functions with a zero of order p at the origin
- Functions with a restriction on the covering of a disk

- Functions with a zero of order p at the origin
- Functions with a restriction on the covering of a disk
- Functions with Montel's normalization

- Functions with a zero of order p at the origin
- Functions with a restriction on the covering of a disk
- Functions with Montel's normalization
- Polynomials

- Functions with a zero of order p at the origin
- Functions with a restriction on the covering of a disk
- Functions with Montel's normalization
- Polynomials
- Circular symmetrization of condensers on the Riemann surfaces

- Functions with a zero of order p at the origin
- Functions with a restriction on the covering of a disk
- Functions with Montel's normalization
- Polynomials
- Circular symmetrization of condensers on the Riemann surfaces
- Examples of applications

Class $S_p(\tau)$, $0 < \tau < \infty$.

 $S_p(\tau)$ is the class of the c.m. p-valent functions of the form

$$f(z) = z^p + a_{p+1}z^{p+1} + \dots, \quad |z| < t \le 1,$$

such that the total multiplicity of their poles in U does not exceed p-1 and the moduli of their nonzero critical values are greater than or equal to τ (a critical value is the value f(z) of f at a point where f'(z)=0).

$$f(z; p, \tau) := \tau \left[T_p \left(\frac{(1-z)^2}{2z} (2\tau)^{1/p} - \cos \frac{\pi}{2p} \right) \right]^{-1} \in S_p(\tau),$$

where $T_p(\zeta) = 2^{p-1}\zeta^p + \dots$ is the Chebyshev polynomial.

Growth and covering theorems

Theorem 1. For each function f in $S_p(\tau)$

$$|f(z)|\geqslant |f(-|z|;p,\tau)|$$

for any $z \in U$. The equality holds for the function $f(z; p, \tau)$ at points z in the interval $-1 < z \le 0$.

Corollary 1. If $f \in S_p(\tau)$, then the radius ρ_f of the maximal disc centred at the origin which is covered by f with multiplicity p satisfies

$$\rho_f \geqslant \frac{\tau}{\left|T_p(\cos\frac{\pi}{2p} + 2(2\tau)^{1/p})\right|}.$$

The equality holds for $f(z) \equiv f(z; p, \tau)$.

Class $S_p(\tau)$

Corollary 2. If $f(z) = z^p + a_{p+1}z^{p+1} + ...$ is a function in the class $S_p(\tau)$, then

$$|a_{p+1}| \leqslant 2p \left[1 + (2\tau)^{-1/p} \cos \frac{\pi}{2p} \right].$$

The equality holds for $f(z) \equiv f(z; p, \tau)$.

Theorem 2. If f is a function in the class $S_p(\tau)$, then for 0 < |z| < 1,

$$\tau|z|\frac{1-|z|}{1+|z|}\left|\frac{f'(z)}{f^2(z)}\right| \leqslant \left|T'_p\left(T_p^{-1}\left(\frac{\tau}{|f(z)|}\right)\right)\right|\left(T_p^{-1}\left(\frac{\tau}{|f(z)|}\right) + \cos\frac{\pi}{2p}\right),$$

where the value $T_p^{-1}(\tau/|f(z)|) \geqslant \cos(\pi/(2p))$. The equality holds for function $f(z; p, \tau)$ for any $z, 0 < z < \widetilde{z}$, where $\widetilde{z}, 0 < \widetilde{z} < 1$, is the root of the equation

$$(1-z)^2(2\tau)^{1/p}=4z\cos\frac{\pi}{2p}.$$

Fekete-Szegö functional

Theorem 3. If a function

$$f(z) = z^{p} + a_{p+1}z^{p+1} + a_{p+2}z^{p+2} + \dots$$

belongs to the class $S_p(\tau)$, then

$$\left| a_{p+2} - \frac{p+1}{2p} a_{p+1}^2 \right| \leqslant p \left(1 + \frac{1}{(2\tau)^{2/p}} \right).$$
 (1)

Formula (1) becomes an equality, for example, for the function

$$f(z) = \frac{\tau}{T_p((1-z^2)(2\tau)^{1/p}/(2z) - \cos(\pi/(2p)))}.$$

Class $D_p(\lambda)$, $0 \leqslant \lambda < \infty$

 $D_p(\lambda)$ is the class of the holomorphic c.m. p-valent functions f such that for each $\rho \geqslant \lambda$ the set $\{z \in U : f'(z) \neq 0, |f(z)| = \rho\}$ contains no a closed curves. In other words: the Riemann surface $\mathscr{R}(f)$ contains no a closed k-valent disk, $k \leqslant p$, branching over the disk $|w| \leqslant \lambda$.

 $D_p(0)$ is the class of the holomorphic c.m. p-valent functions without zeros in U, $D_p(0) \subset D_p(\lambda)$, $\lambda \geqslant 0$.

Distortion theorem

Theorem 4. If f is a function in the class $D_p(\lambda)$, $\lambda > 0$, then the following sharp estimate holds for each z in the disc U:

$$(1-|z|^2)|f'(z)| \leqslant 4\lambda \left[1+T_p^{-1}\left(\left|\frac{f(z)}{\lambda}\right|\right)\right]T_p'\left(T_p^{-1}\left(\left|\frac{f(z)}{\lambda}\right|\right)\right),$$

where the value $T_p^{-1}(|f(z)/\lambda|) \geqslant \cos(\pi/(2p))$. The equality holds for

$$f(z) = \lambda T_p \left(c \left(\frac{1+z}{1-z} \right)^2 - 1 \right)$$

on the interval 0 < z < 1, where $c \geqslant 1 + \cos(\pi/(2p))$ is arbitrary.

Distortion theorem

Corollary 3. If $f(z) = a_0 + a_1 z + ...$ is a function in the class $D_p(\lambda)$, $\lambda > 0$, then

$$|a_1| \leqslant 4\lambda \left[1 + T_p^{-1}\left(\left|\frac{a_0}{\lambda}\right|\right)\right] T_p'\left(T_p^{-1}\left(\left|\frac{a_0}{\lambda}\right|\right)\right).$$

The equality holds for the functions from Theorem 4.

Letting λ approach 0 we obtain Hayman's inequality

$$|a_1| \leqslant 4p|a_0|,$$

which holds for each holomorphic c.m. p-valent function f without zeros in U. The equality holds for the function

$$f(z) = a_0[(1+z)/(1-z)]^{2p}.$$

Theorem 5. Let a function f belongs to the class $D_p(\lambda)$, $\lambda > 0$. In this case, for any two points z_1 and z_2 in the disk U, the following inequality holds:

$$(1 - |z_{1}|^{2})|f'(z_{1})|(1 - |z_{2}|^{2})|f'(z_{2})| \left| \frac{z_{1} - z_{2}}{1 - \overline{z}_{1} z_{2}} \right|^{2} \leqslant$$

$$\leqslant \lambda^{2} T_{p}' \left(T_{p}^{-1} \left(\left| \frac{f(z_{1})}{\lambda} \right| \right) \right) T_{p}' \left(T_{p}^{-1} \left(\left| \frac{f(z_{2})}{\lambda} \right| \right) \right) \times$$

$$\times \left[T_{p}^{-1} \left(\left| \frac{f(z_{1})}{\lambda} \right| \right) + T_{p}^{-1} \left(\left| \frac{f(z_{2})}{\lambda} \right| \right) \right]^{2}. \tag{2}$$

Formula (2) becomes an equality, for example, for functions of the form

$$f(z) = \lambda T_p \left(\frac{az}{1-z^2} \right), \quad z \in U,$$

for all positive a such that $|T_p(ai/2)| \ge 1$ and for any points z_1, z_2 such that

$$z_1 = -z_2 = x$$
, $1 > x \geqslant -\frac{a}{\cos(\pi/(2p))} + \sqrt{\frac{a^2}{4\cos^2(\pi/(2p)) + 1}}$.

Corollary 4. Suppose that a holomorphic and p-valent function f does not vanish in this disk U. Then the inequality

$$(1-|z_1|^2)|f'(z_1)|(1-|z_2|^2)|f'(z_2)|\left|\frac{z_1-z_2}{1-\overline{z}_1z_2}\right|^2\leqslant$$

$$|| \leq p^2 |f(z_1)f(z_2)| \left[\left| \frac{f(z_1)}{f(z_2)} \right|^{1/(2p)} + \left| \frac{f(z_2)}{f(z_1)} \right|^{1/(2p)} \right]^2$$

holds for any two points z_1 and z_2 in U. The formula becomes an equality, for example, for the function $f(z) = [(1+z)/(1-z)]^{2p}$, and points z_k , $[(1+z_k)/(1-z_k)]^2 = (-1)^k it$, t>0, k=1,2.

Growth theorem

Theorem 6. If $f(z) = a_0 + a_1 z + ...$ is a function in the class $D_p(\lambda)$, $\lambda > 0$, then for each $z, z \in U$,

$$|f(z)| \leqslant \lambda T_{\rho} \left[T_{\rho}^{-1} \left(\left| \frac{a_0}{\lambda} \right| \right) + \frac{4|z|}{(1-|z|)^2} \left(T_{\rho}^{-1} \left(\left| \frac{a_0}{\lambda} \right| \right) + 1 \right) \right],$$

with equality as in Theorem 4.

As might be expected, letting $\lambda o 0$ we arrive at Hayman's result

$$|f(z)| \leqslant |a_0| \left(\frac{1+|z|}{1-|z|}\right)^{2\rho}.$$

Montel's normalization

 $M_p(\omega)$ is the class of the holomorphic c.m. *p*-valent functions in the disk *U* normalized by f(0)=0, $f(\omega)=\omega$ $(0<\omega<1)$.

Let $\mathscr{R}(f)$ be the Riemann surface of the function inverse f, $f \in M_p(\omega)$.

Theorem 7. For every function f from the class $M_p(\omega)$, $p \geqslant 2$, the Riemann surface $\mathcal{R}(f)$ contains an open k-valent disk, $k \leqslant p$, branching over the disk

$$|w| < \rho(p,\omega) := \frac{\omega}{T_p \left[\frac{4\omega + (1+\omega)^2 \cos(\pi/(2p))}{(1-\omega)^2}\right]}.$$

The constant $\rho(p,\omega)$ is the best possible.

Two examples

For fixed ω , r (0 < r < 1) and $p \ge 2$

$$f_1(z) = \omega \frac{T_p \left[\frac{2z(1+r)^2}{r(1-z)^2} \cos \frac{\pi}{2p} + \cos \frac{\pi}{2p} \right]}{T_p \left[\frac{2\omega(1+r)^2}{r(1-\omega)^2} \cos \frac{\pi}{2p} + \cos \frac{\pi}{2p} \right]};$$

 $f_1(z)\in M_p(\omega)$ and $f_1(-r)=0$.

For fixed ω , r, p and $\lambda > 0$

$$f_2(z) \equiv f(z; \omega, p, \lambda) = \lambda T_p \left[\frac{z(1+\omega)^2}{\omega(1+z)^2} \left(T_p^{-1} \left(\frac{\omega}{\lambda} \right) + \cos \frac{\pi}{2p} \right) - \cos \frac{\pi}{2p} \right];$$

 $|f(-r)| \to \infty$ when $\lambda \to \infty$.

Montel's normalization

Theorem 8. If a function f belongs to the class $M_p(\omega)$ and $\mathcal{R}(f)$ contains no a closed k-valent disk, k < p, over the disk $|w| \leq \lambda, \lambda > 0$, then, for any $z \in (-1,0)$,

$$|f(z)| \leq |f(z; \omega, p, \lambda)|,$$

where

$$f(z;\omega,p,\lambda) = \lambda T_p \left[\frac{z(1+\omega)^2}{\omega(1+z)^2} \left(T_p^{-1} \left(\frac{\omega}{\lambda} \right) + \cos \frac{\pi}{2p} \right) - \cos \frac{\pi}{2p} \right].$$

Montel's normalization

Theorem 9. With the hypotheses of Theorem 8 we have

$$|f'(0)| \leq \frac{\lambda p(1+\omega)^2}{\omega \sin(\pi/(2p))} \left(T_p^{-1}(\omega/\lambda) + \cos \frac{\pi}{2p} \right),$$

where $T_p^{-1}(\omega/\lambda) \geq \cos(\pi/(2p))$.

Equality is attained only for $f(z) = f(z; \omega, p, \lambda)$.

Distortion theorem for polynomials

Theorem 10. Suppose that all critical values of the polynomial

$$P(z) = c_0 + c_1 z + \ldots + c_n z^n, \ c_n \neq 0, \ n \geqslant 2,$$

belong to the disk $|w| \le 1$. Then for any point z the following inequality holds:

$$|P'(z)| \leq 2^{\frac{1-n}{n}} |c_n|^{\frac{1}{n}} T'_n(T_n^{-1}(|P(z)|)),$$

where $T_n^{-1}(|P(z)|)$ is situated on the ray $[\cos(\pi/(2n)), +\infty]$. Equality is attained, for instance, for $P=T_n$ and any real z, $|z|\geqslant \cos(\pi/(2n))$.

Markov-type inequality

$$M = \sup\{|P(z)| : z \in E\},$$

 $M_c = \sup\{|P(z)| : P'(z) = 0\}.$

Theorem 11. Let E be a bounded set in the complex plane, and P a polynomial of degree n. Then

$$\operatorname{cap} E \sup_{E} |P'| \leq \left(\frac{2M}{M_c}\right)^{\frac{1-n}{n}} T'_n \left(T_n^{-1} \left(\frac{M}{M_c}\right)\right) M.$$

Equality is attained, for instance, for $P = M_c T_n$ and $E = \{z : |P(z)| \le M\}$, where M_c and M are an arbitrary positive numbers.

Comparison with Eremenko's inequality

$$\operatorname{cap} E \sup_{E} |P'| \leq \left(\frac{2M}{M_c}\right)^{\frac{1-n}{n}} T'_n \left(T_n^{-1} \left(\frac{M}{M_c}\right)\right) M.$$

Theorem (Eremenko [2007]). Let E be a continuum in the complex plane, and P a polynomial of degree n. Then

$$\operatorname{cap} E \sup_{E} |P'| \le 2^{1/n-1} n^2 \sup_{E} |P|.$$

$$(\sup_{E}|P|=M)$$

Lower bound for moduli of critical values

Theorem 12. For any polynomial $P(z) = c_1 z + + c_n z^n$, $c_1 \neq 0$, $c_n \neq 0$, there exist a critical value $P(\zeta)$ ($P'(\zeta) = 0$) such that

$$|P(\zeta)| \geq 2\left(\frac{1}{n}\sin\frac{\pi}{2n}\right)^{\frac{n}{n-1}}\left|\frac{c_1^n}{c_n}\right|^{\frac{1}{n-1}}.$$

Equality is attained for the polynomial $T_n(z - \cos(\pi/(2n)))$ whose critical values are unimodal.

Upper bound for moduli of critical values

Theorem 13. For any polynomial $P(z) = c_1 z + + c_n z^n$, $c_1 \neq 0$, $c_n \neq 0$, there exist a critical value $P(\zeta)$ such that

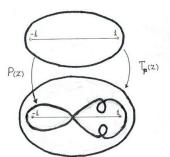
$$|P(\zeta)| \leq (n-1) \left(\frac{1}{n}\right)^{\frac{n}{n-1}} \left|\frac{c_1^n}{c_n}\right|^{\frac{1}{n-1}}.$$

Equality holds for $P(z) = c_1 z + c_n z^n$.

Chebyshev polynomial

Recall that the Chebyshev polynomial of the first kind $T_p(z) = 2^{p-1}z^p + ...$ can be defined in terms of conformal maps as the composite of the inverse Zhukovskii function, a power function, and Zhukovskii function:

$$T_{p}(z) = \frac{1}{2} \left((z + \sqrt{z^{2} - 1})^{p} + (z - \sqrt{z^{2} - 1})^{p} \right), \quad z \in \mathbb{C}.$$



Riemann surfaces

Throughout we consider compact Riemann surfaces with boundary. We also treat such a surfaces as 'glued' from planar domains, so that for points on a surface we have naturally defined projections and local parameters. Let $\gamma(\rho)=\{w:|w|=\rho\},\ 0\leqslant\rho\leqslant\infty.$ Then $\Re_p,\ p\geqslant 1$, will denote the class of Riemann surfaces $\mathscr R$ over the complex w-sphere which satisfy the following conditions:

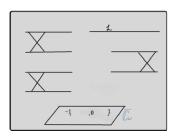
- 1) taking account of multiplicities, the total linear measure of any system of arcs on $\mathcal R$ which lies over an arbitrary circle $\gamma(\rho)$,
- $0<
 ho<\infty$, has the estimate $2\pi p
 ho$;
- 2) for $1\leqslant \rho<\infty$, any closed Jordan curve on $\mathscr R$ over a circle $\gamma(\rho)$ which does not pass through ramification points of $\mathscr R$ covers this circle with multiplicity ρ .

Riemann surface $\mathcal{R}(T_p)$

A special case of a surface in \mathfrak{R}_p , which is important for us, is the Riemann surface $\mathscr{R}(T_p)$ of the inverse function of the Chebyshev polynomial T_p . Let us describe this surface for $p \ge 2$. The hyperbolas with foci at $z=\pm 1$ which pass through the critical points $z = \cos(k\pi/p)$, $k = 1, \dots, p-1$, of the Chebyshev polynomial partition the z-plane into p paiwise disjoint domains. Let B_1, \ldots, B_p be these domains from right to left. The polynomial T_p maps B_1 conformally and univalently onto the domain D_1 equal to the w-plane cut along the ray $L^- := [-\infty, -1]$. The same polynomial takes the domains B_2, \ldots, B_{p-1} to D_2, \ldots, D_{p-1} , copies of the w-plane cut along the rays L^- and $L^+ := [1, +\infty]$. Finally, B_p is mapped onto D_p , the w-plane cut along the ray L^- if p is even or along L^+ if p is odd.

Riemann surface $\mathcal{R}(T_p)$

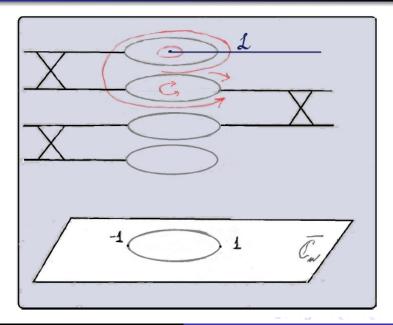
We construct the Riemann surface $\mathscr{R}(\mathcal{T}_p)$ by gluing together the domain D_k , $k=1,\ldots,p$, as follows: D_1 is glued crosswise to D_2 along the sides of the cuts made along the ray L^- . Domain D_2 is glued to D_3 along the sides of the cuts made along the ray L^+ , and so on. Domain D_{p-1} is glued to D_p through L^- if p is even and though L^+ is p is odd. The domain D_k viewed as a subset of the $\mathscr{R}(\mathcal{T}_p)$ will be denoted by \mathscr{D}_k . Let \mathscr{L} denote the 'ray' over $[0,+\infty]$ on \mathscr{D}_1 .



Symmetrization of an open set

Let \mathscr{B} be an open set in $\mathscr{R} \in \mathfrak{R}_p$. Then symmetrization Sym transforms \mathscr{B} into a subset $\operatorname{Sym} \mathscr{B}$ of $\mathscr{R}(T_p)$ with the following properties. Fix some ρ , $0\leqslant\rho\leqslant\infty$. If no points in $\mathscr B$ lie over the circle $\gamma(\rho)$, then no points in $\operatorname{Sym} \mathscr{B}$ lie over it either. If \mathscr{B} covers $\gamma(\rho)$, $1 \leqslant \rho \leqslant \infty$, with multiplicity p, the Sym \mathscr{B} also covers $\gamma(\rho)$ with multiplicity p. If \mathscr{B} covers $\gamma(\rho)$, $0 \leq \rho < 1$, with multiplicity $l \leq p$, then the part of Sym \mathscr{B} over $\gamma(\rho)$ consist of lcircles lying on the sheets $\mathcal{D}_1, \ldots, \mathcal{D}_l$. In the other cases, for $1 \leq \rho < \infty$ the part of Sym \mathscr{B} lying over $\gamma(\rho)$ is an open arc on $\mathscr{R}(T_p)$ with midpoint on the ray $\mathscr L$ and with linear measure equal to the measure of $\mathscr{B}(\rho) := \{ W \in \mathscr{B} : |\operatorname{pr} W| = \rho \}$. For $0 < \rho < 1$ the part of $\operatorname{Sym} \mathscr{B}$ over $\gamma(\rho)$ is a union of m circle $\Gamma_1, \ldots, \Gamma_m$, $0 \le m \le p-1$, and an open arc Γ_{m+1} such that $\Gamma_k = \Gamma_k(\mathscr{B}, \rho) \subset \mathscr{D}_k$, $k = 1, \ldots, m+1$; the total linear measure of these curves is equal to the measure of $\mathcal{B}(\rho)$, and the midpoint of Γ_{m+1} lies over $(-1)^m \rho$. If the measure of $\mathscr{B}(\rho)$ is less than $2\pi\rho$, then necessarily m=0, and there are no full circle.

Symmetrization of an open set



Condenser on the Riemann surface

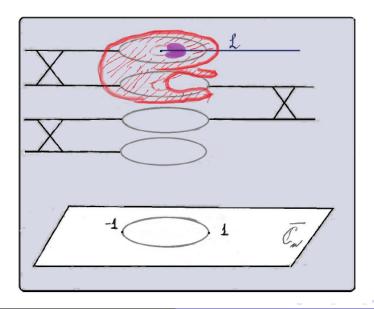
A condenser on the surface \mathscr{R} is an ordered pair of sets $\mathscr{C}=(\mathscr{B},\mathscr{E})$, where \mathscr{R} is an open subset of \mathscr{R} and \mathscr{E} is a compact subset of \mathscr{B} . We call $\mathscr{B}\backslash\mathscr{E}$ the field of the condenser. The capacity $\operatorname{cap}\mathscr{C}$ of the condenser \mathscr{C} is defined by

$$\operatorname{cap}\mathscr{C}=\inf\int\limits_{\mathscr{B}}|\nabla\mathscr{V}|^2d\sigma,$$

where the infimum is taken over all real-valued functions $\mathscr V$ which have compact support in $\mathscr B$, are equal to 1 on $\mathscr E$ and are locally Lipschitz in $\mathscr B$.

$$\operatorname{Sym}\mathscr{C}=(\operatorname{Sym}\mathscr{B},\operatorname{Sym}\mathscr{E}).$$

Symmetrization of condenser



Symmetrization principle

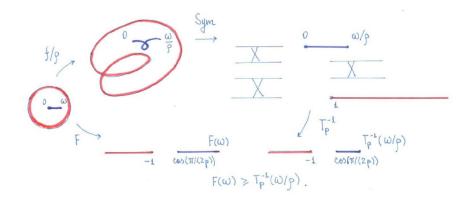
Theorem 14. For each condenser $\mathscr C$ on a surface $\mathscr R$ in the class $\mathfrak R_p$

$$\operatorname{cap}\mathscr{C} \geqslant \operatorname{capSym}\mathscr{C}. \tag{3}$$

In addition, if $\mathscr{C} = (\mathscr{B}, \mathscr{E})$ has a connected field and the potential function of \mathscr{C} exists, then equality in (3) holds only in the following cases:

- (i) the field of $\mathscr C$ coincides with the field of $\operatorname{Sym}\mathscr C$ up to rotations about the origin;
- (ii) for some s,t and $l,0 < s < t < \infty, 1 < l \leqslant p$, the field $\mathscr C$ covers a circular annulus s < |w| < t with multiplicity l so that the inverse image of each boundary circle of the annulus is either formed entirely by boundary points of $\mathscr B$ or is formed entirely by boundary points of $\mathscr E$.

The proof of Theorem 7



Denote by \mathscr{P}_n the set of all polynomials of degree $n \geqslant 2$ the moduli of whose critical values are at most 1; and let T_n^{-1} be the continuous branch of the inverse function of T_n defined on the ray $[0, +\infty]$ and taking this ray onto the ray $[\cos(\pi/(2n)), +\infty]$.

Theorem 15. If a polynomial P belongs to \mathcal{P}_n then

$$|P'(0)P'(1)| \leq$$

$$\leq T'_n(T_n^{-1}(|P(0)|))T'_n(T_n^{-1}(|P(1)|))[T_n^{-1}(|P(0)|) + T_n^{-1}(|P(1)|)]^2.$$

The equality is attained, for example, if $P(z) = T_n(\alpha z + \beta)$, for all real α and β satisfying the conditions $\alpha + \beta \ge \cos(\pi/(2n))$ and $\beta \le -\cos(\pi/(2n))$.

Proof

