Painlevé equations and quantum cluster algebras

Marta Mazzocco

Based on Chekhov-M.M. arXiv:1509.07044 and Chekhov-M.M.-Rubtsov arXiv:1511.03851

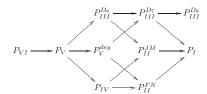
$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = 6w^2 + z \qquad \qquad \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = 2w^3 + zw + \alpha$$

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = \frac{1}{w} \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^2 - \frac{1}{z} \frac{\mathrm{d}w}{\mathrm{d}z} + \frac{\alpha w^2 + \beta}{z} + \gamma w^3 + \frac{\delta}{w}$$

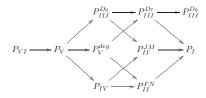
$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = \frac{1}{2w} \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^2 + \frac{3}{2}w^3 + 4zw^2 + 2(z^2 - \alpha)w + \frac{\beta}{w}$$

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = \frac{3w - 1}{2w(w - 1)}w_z^2 - \frac{1}{z} \frac{\mathrm{d}w}{\mathrm{d}z} + \frac{\gamma w}{z} + \frac{(w - 1)^2}{z^2} \frac{\alpha w^2 + \beta}{w} + \frac{\delta w(w + 1)}{w - 1}$$

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = \frac{1}{2} \left(\frac{1}{w} + \frac{1}{w - 1} + \frac{1}{w - z}\right)w_z^2 - \left(\frac{1}{z} + \frac{1}{z - 1} + \frac{1}{w - z}\right)w_z + \frac{w(w - 1)(w - z)}{z^2(z - 1)^2} \left[\alpha + \beta \frac{z}{w^2} + \gamma \frac{z - 1}{(w - 1)^2} + \delta \frac{z(z - 1)}{(w - z)^2}\right]$$



Confluences of the Painlevé equations



Example

Take
$$w(z) = \epsilon \tilde{w}(\tilde{z}) + \frac{1}{\epsilon^5}$$
, $z = \epsilon^2 \tilde{z} - \frac{6}{\epsilon^{10}}$, $\alpha = \frac{4}{\epsilon^{15}}$ then PII
$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = 2w^3 + zw + \alpha$$

becomes:

$$\frac{\mathrm{d}^2 \tilde{w}}{\mathrm{d}\tilde{z}^2} = 6\tilde{w}^2 + \tilde{z} + \epsilon^6 (2\tilde{w}^3 + \tilde{z}\tilde{w}),$$

that for $\epsilon \to 0$ is PI.

All Painlevé equations are isomonodromic deformation equations (Jimbo-Miwa 1980)

$$\frac{\mathrm{d}B}{\mathrm{d}\lambda} - \frac{\mathrm{d}A}{\mathrm{d}z} = [A, B]$$

$$A = A(\lambda; z, w, w_z), B = B(\lambda; z, w, w_z) \in \mathfrak{sl}_2.$$

All Painlevé equations are isomonodromic deformation equations (Jimbo-Miwa 1980)

$$\frac{\mathrm{d}B}{\mathrm{d}\lambda} - \frac{\mathrm{d}A}{\mathrm{d}z} = [A, B]$$

 $A = A(\lambda; z, w, w_z), B = B(\lambda; z, w, w_z) \in \mathfrak{sl}_2.$

This means that the monodromy data of the linear system

$$\frac{\mathrm{d}Y}{\mathrm{d}\lambda} = A(\lambda; z, w, w_z)Y$$

are locally constant along solutions of the Painlevé equation.

Monodromy manifolds for the Painlevé equations

To each Painlevé equation we associate a linear system

$$\frac{\mathrm{d}Y}{\mathrm{d}\lambda}=A(\lambda;z,w,w_z)Y.$$

Monodromy manifolds for the Painlevé equations

Geometric description

To each Painlevé equation we associate a linear system

$$\frac{\mathrm{d}Y}{\mathrm{d}\lambda}=A(\lambda;z,w,w_z)Y.$$

 The monodromy data of this system are constant along local solutions of the Painlevé equations.

Geometric description

To each Painlevé equation we associate a linear system

$$\frac{\mathrm{d}Y}{\mathrm{d}\lambda}=A(\lambda;z,w,w_z)Y.$$

- The monodromy data of this system are constant along local solutions of the Painlevé equations.
- The monodromy data are encoded in a cubic surface called monodromy manifold.

Monodromy manifolds for the Painlevé equations

• To each Painlevé equation we associate a linear system

$$\frac{\mathrm{d}Y}{\mathrm{d}\lambda}=A(\lambda;z,w,w_z)Y.$$

- The monodromy data of this system are constant along local solutions of the Painlevé equations.
- The monodromy data are encoded in a cubic surface called monodromy manifold.
- Each point in the monodromy manifold determines a unique local solution to the Painlevé equation (modulo Okamoto transformations).

Monodromy manifolds for the Painlevé equations

$$M_{\varphi} := \mathbb{C}[x_1, x_2, x_3]/\langle \varphi = 0 \rangle$$

$$M_{\varphi} := \mathbb{C}[x_1, x_2, x_3]/\langle \varphi = 0 \rangle$$

P-eqs	Polynomial $arphi$
PVI	$x_1x_2x_3 + x_1^2 + x_2^2 + x_3^2 + \omega_1x_1 + \omega_2x_2 + \omega_3x_3 + \omega_4$
PV	$x_1x_2x_3 + x_1^2 + x_2^2 + \omega_1x_1 + \omega_2x_2 + \omega_3x_3 + \omega_4$
PV_{deg}	$x_1x_2x_3 + x_1^2 + x_2^2 + \omega_1x_1 + \omega_2x_2 + \omega_1 - 1$
PIV	$x_1x_2x_3 + x_1^2 + \omega_1x_1 + \omega_2(x_2 + x_3) + \omega_2(1 + \omega_1 - \omega_2)$
PIII	$x_1x_2x_3 + x_1^2 + x_2^2 + \omega_1x_1 + \omega_2x_2 + \omega_1 - 1$
$PIII^{D_7}$	$x_1x_2x_3 + x_1^2 + x_2^2 + \omega_1x_1 - x_2$
$PIII^{D_8}$	$x_1x_2x_3 + x_1^2 + x_2^2 - x_2$
PII^{JM}	$x_1x_2x_3 - x_1 + \omega_2x_2 - x_3 - \omega_2 + 1$
PII ^{FN}	$x_1x_2x_3 + x_1^2 + \omega_1x_1 - x_2 - 1$
PI	$x_1x_2x_3 - x_1 - x_2 + 1$

Saito and van der Put

• The PVI monodromy manifold is the $SL_2(\mathbb{C})$ -character variety of a four holed Riemann sphere.

Aim of this talk

- The PVI monodromy manifold is the $SL_2(\mathbb{C})$ -character variety of a four holed Riemann sphere.
- What is the underlying Riemann surface for the other Painlevé equations? [Sutherland, Gaiotto-Moore-Neitzke '13]

Aim of this talk

- The PVI monodromy manifold is the $SL_2(\mathbb{C})$ -character variety of a four holed Riemann sphere.
- What is the underlying Riemann surface for the other Painlevé equations? [Sutherland, Gaiotto-Moore-Neitzke '13]
- What is the correct notion of character variety? [Boalch, Paul-Ramis '15]

Aim of this talk

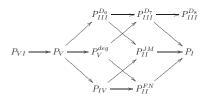
- The PVI monodromy manifold is the $SL_2(\mathbb{C})$ -character variety of a four holed Riemann sphere.
- What is the underlying Riemann surface for the other Painlevé equations? [Sutherland, Gaiotto-Moore-Neitzke '13]
- What is the correct notion of character variety? [Boalch, Paul-Ramis '15]
- Is there a cluster algebra structure?

• The PVI monodromy manifold is the $SL_2(\mathbb{C})$ -character variety of a four holed Riemann sphere.

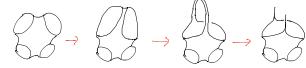
Laminations

- What is the underlying Riemann surface for the other Painlevé equations? [Sutherland, Gaiotto-Moore-Neitzke '13]
- What is the correct notion of character variety? [Boalch, Paul-Ramis '15]
- Is there a cluster algebra structure?

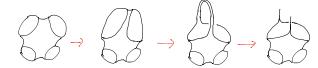
Use the confluence scheme of the Painlevé equations.



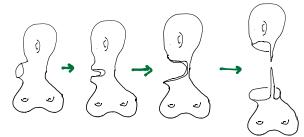
• Hooking holes:



Hooking holes:

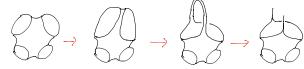


• Pinching two sides of the same hole:

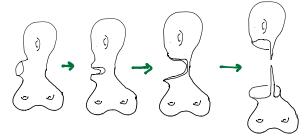


Chewing-gum moves

• Hooking holes:

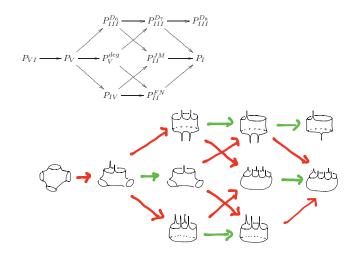


• Pinching two sides of the same hole:



Bordered cusps à la Fomin-Shapiro-Thurston.

Painlevé equations



[Chekhov-M.M.-Rubtsov arXiv:1511.03851]

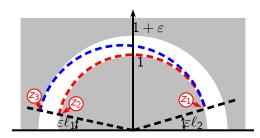
Chewing-gums in Poincaré uniformisation

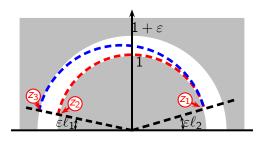
Start with a Riemann surface with holes:

$$\Sigma = \mathbb{H}/\Delta$$
,

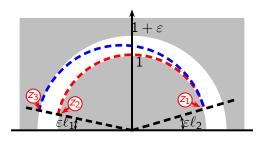
where Δ is a *Fuchsian group*, i.e. a discrete sub-group of $\mathbb{P}SL_2(\mathbb{R})$. We want to understand

- What happens to the fundamental domain of Δ under the chewing-gum move.
- What happens to the closed geodesics.



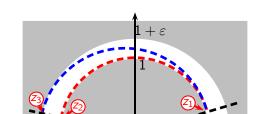


$$\bullet \left(\sinh \frac{d_{\mathbb{H}}(z_1, z_2)}{2}\right)^2 = \frac{|z_1 - z_2|^2}{4\Im z_1 \Im z_2}$$



$$\bullet \ \left(\sinh \frac{d_{\mathbb{H}}(z_1,z_2)}{2}\right)^2 = \frac{|z_1-z_2|^2}{4\Im z_1\Im z_2}$$

•
$$e^{d_{\mathbb{H}}(z_1,z_2)} \sim \frac{1}{l_1 l_2 \epsilon^2} + \frac{(l_1+l_2)^2}{l_1 l_2} + \mathcal{O}(\epsilon)$$
,

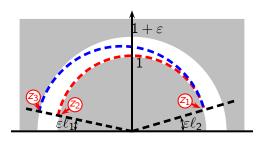


•
$$\left(\sinh \frac{d_{\mathbb{H}}(z_1, z_2)}{2}\right)^2 = \frac{|z_1 - z_2|^2}{4\Im z_1 \Im z_2}$$

$$\bullet \ e^{d_{\mathbb{H}}(z_1,z_2)} \sim rac{1}{l_1l_2\epsilon^2} + rac{(l_1+l_2)^2}{l_1l_2} + \mathcal{O}(\epsilon),$$

•
$$e^{d_{\mathbb{H}}(z_1,z_3)} \sim e^{d_{\mathbb{H}}(z_1,z_2)} + \frac{1}{l_1 l_2} + \mathcal{O}(\epsilon)$$
.

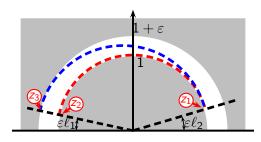
Chewing gum

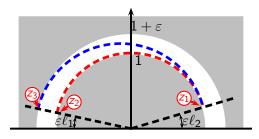


- $\bullet \left(\sinh \frac{d_{\mathbb{H}}(z_1, z_2)}{2}\right)^2 = \frac{|z_1 z_2|^2}{4\Im z_1 \Im z_2}$
- $e^{d_{\mathbb{H}}(z_1,z_2)} \sim \frac{1}{l_1 l_2 \epsilon^2} + \frac{(l_1+l_2)^2}{l_1 l_2} + \mathcal{O}(\epsilon)$,
- $e^{d_{\mathbb{H}}(z_1,z_3)} \sim e^{d_{\mathbb{H}}(z_1,z_2)} + \frac{1}{hh} + \mathcal{O}(\epsilon)$.
- \Rightarrow Rescale all geodesic lengths by ϵ and take the limit $\epsilon \to 0$.

[Chekhov-M.M. arXiv:1509.07044]

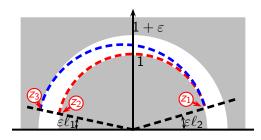
Chewing gum



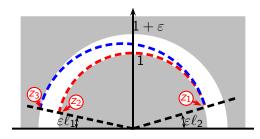


As $\epsilon \to 0$:

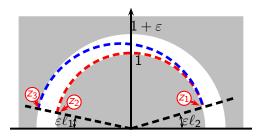
• Vertical segment becomes infinitely distant from the collars.



- Vertical segment becomes infinitely distant from the collars.
- Vertical segment becomes a point.



- Vertical segment becomes infinitely distant from the collars.
- Vertical segment becomes a point.
- Collars become horocycles.



- Vertical segment becomes infinitely distant from the collars.
- Vertical segment becomes a point.
- Collars become horocycles.
- ullet Lengths of closed geodesics become λ lengths of infinite arcs.

Geodesic lengths

Theorem

The geodesic length functions form an algebra with multiplication:

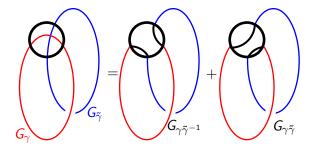
$$G_{\gamma}G_{\tilde{\gamma}}=G_{\gamma\tilde{\gamma}}+G_{\gamma\tilde{\gamma}^{-1}}.$$

Geodesic lengths

Theorem

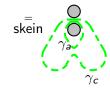
The geodesic length functions form an algebra with multiplication:

$$G_{\gamma}G_{\widetilde{\gamma}}=G_{\gamma\widetilde{\gamma}}+G_{\gamma\widetilde{\gamma}^{-1}}.$$

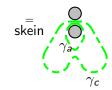


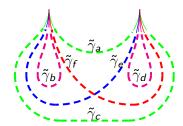
+ the rest

Painlevé equations



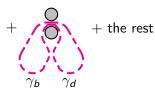
+ the rest

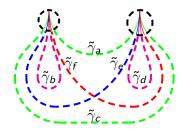




$$\begin{array}{c}
=\\
\text{skein}
\end{array}$$

$$\begin{array}{c}
\gamma_{a} \\
\gamma_{c}
\end{array}$$



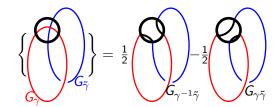


$$G_{\widetilde{\gamma}_e} G_{\widetilde{\gamma}_f} = G_{\widetilde{\gamma}_a} G_{\widetilde{\gamma}_c} + G_{\widetilde{\gamma}_b} G_{\widetilde{\gamma}_d}$$

Quatisation

Poisson structure

$$\{\mathit{G}_{\gamma},\mathit{G}_{\widetilde{\gamma}}\} = rac{1}{2}\mathit{G}_{\gamma\widetilde{\gamma}} - rac{1}{2}\mathit{G}_{\gamma\widetilde{\gamma}^{-1}}.$$



Definition

A cusped lamination is a lamination made of arcs that can only meet at the cusps.

Definition

A cusped lamination is a lamination made of arcs that can only meet at the cusps.

Definition

A cusped lamination is complete if all geodesic functions and all λ -lengths of arcs in the Riemann surface are Laurent polynomials of the λ -lengths of the arcs in the cusped lamination.

Definition

A cusped lamination is a lamination made of arcs that can only meet at the cusps.

Definition

A cusped lamination is complete if all geodesic functions and all λ -lengths of arcs in the Riemann surface are Laurent polynomials of the λ -lengths of the arcs in the cusped lamination.

Theorem

Given a Riemann surface of any genus, any number of holes and at least one cusp, there always exists a complete cusped lamination

[Chekhov-M.M. ArXiv:1509.07044].

Theorem

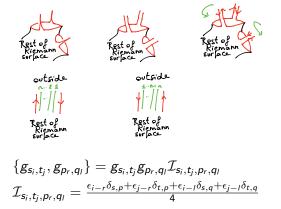
Theorem

Theorem

Theorem

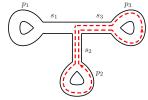
Theorem

Theorem



Shear coordinates in the Teichmüller space

Fatgraph:

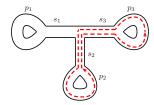


Quatisation

Shear coordinates in the Teichmüller space

Geometric description

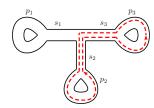
Fatgraph:



Decompose each hyperbolic element in Right, Left and Edge matrices Fock, Thurston

$$\begin{split} R := \left(\begin{array}{cc} 1 & 1 \\ -1 & 0 \end{array} \right), \quad L := \left(\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array} \right), \\ X_y := \left(\begin{array}{cc} 0 & -\exp\left(\frac{y}{2}\right) \\ \exp\left(-\frac{y}{2}\right) & 0 \end{array} \right). \end{split}$$

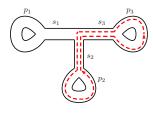
Quatisation



The three geodesic lengths: $x_i = \text{Tr}(\gamma_{ik})$

Geometric description

$$\begin{aligned} x_1 &= e^{s_2+s_3} + e^{-s_2-s_3} + e^{-s_2+s_3} + \left(e^{\frac{p_2}{2}} + e^{-\frac{p_2}{2}}\right) e^{s_3} + \left(e^{\frac{p_3}{2}} + e^{-\frac{p_3}{2}}\right) e^{-s_2} \\ x_2 &= e^{s_3+s_1} + e^{-s_3-s_1} + e^{-s_3+s_1} + \left(e^{\frac{p_3}{2}} + e^{-\frac{p_3}{2}}\right) e^{s_1} + \left(e^{\frac{p_1}{2}} + e^{-\frac{p_1}{2}}\right) e^{-s_3} \\ x_3 &= e^{s_1+s_2} + e^{-s_1-s_2} + e^{-s_1+s_2} + \left(e^{\frac{p_1}{2}} + e^{-\frac{p_1}{2}}\right) e^{s_2} + \left(e^{\frac{p_2}{2}} + e^{-\frac{p_2}{2}}\right) e^{-s_1} \end{aligned}$$



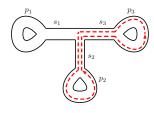
The three geodesic lengths: $x_i = \text{Tr}(\gamma_{ik})$

$$x_{1} = e^{s_{2}+s_{3}} + e^{-s_{2}-s_{3}} + e^{-s_{2}+s_{3}} + \left(e^{\frac{p_{2}}{2}} + e^{-\frac{p_{2}}{2}}\right)e^{s_{3}} + \left(e^{\frac{p_{3}}{2}} + e^{-\frac{p_{3}}{2}}\right)e^{-s_{2}}$$

$$x_{2} = e^{s_{3}+s_{1}} + e^{-s_{3}-s_{1}} + e^{-s_{3}+s_{1}} + \left(e^{\frac{p_{3}}{2}} + e^{-\frac{p_{3}}{2}}\right)e^{s_{1}} + \left(e^{\frac{p_{1}}{2}} + e^{-\frac{p_{1}}{2}}\right)e^{-s_{3}}$$

$$x_{3} = e^{s_{1}+s_{2}} + e^{-s_{1}-s_{2}} + e^{-s_{1}+s_{2}} + \left(e^{\frac{p_{1}}{2}} + e^{-\frac{p_{1}}{2}}\right)e^{s_{2}} + \left(e^{\frac{p_{2}}{2}} + e^{-\frac{p_{2}}{2}}\right)e^{-s_{1}}$$

$${x_1, x_2} = 2x_3 + \omega_3, \quad {x_2, x_3} = 2x_1 + \omega_1, \quad {x_3, x_1} = 2x_2 + \omega_2.$$



The three geodesic lengths: $x_i = \text{Tr}(\gamma_{ik})$

$$x_{1} = e^{s_{2}+s_{3}} + e^{-s_{2}-s_{3}} + e^{-s_{2}+s_{3}} + \left(e^{\frac{p_{2}}{2}} + e^{-\frac{p_{2}}{2}}\right)e^{s_{3}} + \left(e^{\frac{p_{3}}{2}} + e^{-\frac{p_{3}}{2}}\right)e^{-s_{2}}$$

$$x_{2} = e^{s_{3}+s_{1}} + e^{-s_{3}-s_{1}} + e^{-s_{3}+s_{1}} + \left(e^{\frac{p_{3}}{2}} + e^{-\frac{p_{3}}{2}}\right)e^{s_{1}} + \left(e^{\frac{p_{1}}{2}} + e^{-\frac{p_{1}}{2}}\right)e^{-s_{3}}$$

$$x_{3} = e^{s_{1}+s_{2}} + e^{-s_{1}-s_{2}} + e^{-s_{1}+s_{2}} + \left(e^{\frac{p_{1}}{2}} + e^{-\frac{p_{1}}{2}}\right)e^{s_{2}} + \left(e^{\frac{p_{2}}{2}} + e^{-\frac{p_{2}}{2}}\right)e^{-s_{1}}$$

$$\{x_1, x_2\} = 2x_3 + \omega_3, \quad \{x_2, x_3\} = 2x_1 + \omega_1, \quad \{x_3, x_1\} = 2x_2 + \omega_2.$$

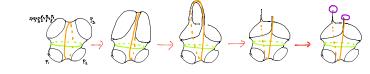
 $x_1x_2x_3 + x_1^2 + x_2^2 + x_3^2 + \omega_1x_1 + \omega_2x_2 + \omega_3x_3 + \omega_4 = 0$

The confluence from PVI to PV is realised by

$$p_3 \to p_3 - 2 \log[\epsilon], \qquad \epsilon \to 0$$

The confluence from PVI to PV is realised by

$$p_3 \to p_3 - 2\log[\epsilon], \qquad \epsilon \to 0$$



$$x_{1} = -e^{s_{2}+s_{3}} - e^{-s_{2}+s_{3}} - \left(e^{\frac{p_{2}}{2}} + e^{-\frac{p_{2}}{2}}\right)e^{s_{3}} - e^{\frac{p_{3}}{2}}e^{-s_{2}}$$

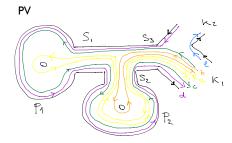
$$x_{2} = -e^{s_{3}+s_{1}} - e^{\frac{p_{3}}{2}}e^{s_{1}},$$

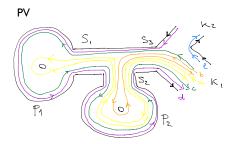
$$x_{3} = -e^{s_{1}+s_{2}} - e^{-s_{1}-s_{2}} - e^{-s_{1}+s_{2}} - \left(e^{\frac{p_{1}}{2}} + e^{-\frac{p_{1}}{2}}\right)e^{s_{2}} - \left(e^{\frac{p_{2}}{2}} + e^{-\frac{p_{2}}{2}}\right)e^{-s_{1}}$$

$$x_{1}x_{2}x_{3} + x_{1}^{2} + x_{2}^{2} + \omega_{1}x_{1} + \omega_{2}x_{2} + \omega_{3}x_{3} + \omega_{4} = 0$$

[Chekhov-M.M.-Rubtsov arXiv:1511.03851]

Lamination for PV



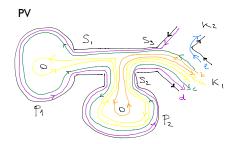


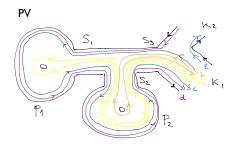
$$\{g_{s_i,t_j},g_{p_r,q_l}\}=$$

$$g_{s_i,t_j}g_{p_r,q_l}\tfrac{\epsilon_{i-r}\delta_{s,p}+\epsilon_{j-r}\delta_{t,p}+\epsilon_{i-l}\delta_{s,q}+\epsilon_{j-l}\delta_{t,q}}{4}$$

$$\begin{aligned}
\{b,d\} &= \{g_{1_3,1_4}, g_{2_1,1_8}\} \\
&= g_{1_3,1_4}g_{2_1,1_8} \frac{\epsilon_{3-1}\delta_{1,2} + \epsilon_{4-1}\delta_{1,2} + \epsilon_{3-8}\delta_{1,1} + \epsilon_{4-8}\delta_{1,1}}{4} \\
&= -bd\frac{1}{2}
\end{aligned}$$

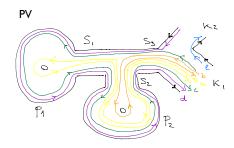
Painlevé equations



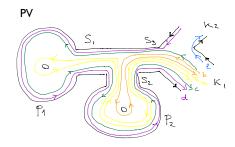


$$\gamma_b = X(k_1)RX(s_3)RX(s_2)RX(p_2)RX(s_2)LX(s_3)LX(k_1)$$

Quatisation



$$\begin{split} \gamma_b &= X(k_1)RX(s_3)RX(s_2)RX(p_2)RX(s_2)LX(s_3)LX(k_1) \\ \text{BUT its λ-length is $b = \operatorname{tr}(bK)$, $K = \left(\begin{array}{cc} 0 & 0 \\ -1 & 0 \end{array} \right) \end{split}$$



$$\gamma_b = X(k_1)RX(s_3)RX(s_2)RX(p_2)RX(s_2)LX(s_3)LX(k_1)$$
 BUT its λ -length is $b = \operatorname{tr}(bK), \ K = \left(egin{array}{cc} 0 & 0 \ -1 & 0 \end{array}
ight)$ $b = \exp(k_1 + s_3 + s_2 + rac{p_2}{2}).$

General result

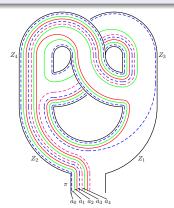
Theorem

All λ -lengths in the complete cusped lamination are monomials in the exponentiated shear coordinates.

General result

Theorem

All λ -lengths in the complete cusped lamination are monomials in the exponentiated shear coordinates.



Quantisation

Painlevé equations

For standard geodesic lengths $\mathcal{G}_{\gamma} o \mathcal{G}_{\gamma}^{\hbar}$ [Chekhov-Fock '99]:

$$\left[egin{align*} egin{align*} egin{align*$$

Quantisation

Painlevé equations

For standard geodesic lengths $G_{\gamma} o G_{\gamma}^{\hbar}$ [Chekhov-Fock '99]:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

For arcs
$$g_{s_i,t_i} o g_{s_i,t_i}^\hbar$$
:

$$q^{\mathcal{I}_{s_i,t_j,p_r,q_l}}g^{\hbar}_{s_i,t_i}g^{\hbar}_{p_r,q_l}=g^{\hbar}_{p_r,q_l}g^{\hbar}_{s_i,t_i}q^{\mathcal{I}_{p_r,q_l,s_i,t_j}}$$

Quantisation

Painlevé equations

For standard geodesic lengths $G_{\gamma} o G_{\gamma}^{\hbar}$ [Chekhov-Fock '99]:

$$\left[egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} e$$

For arcs $g_{s_i,t_i} \rightarrow g_{s_i,t_i}^{\hbar}$:

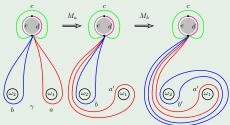
$$q^{\mathcal{I}_{s_i,t_j,p_r,q_l}}g^{\hbar}_{s_i,t_i}g^{\hbar}_{p_r,q_l}=g^{\hbar}_{p_r,q_l}g^{\hbar}_{s_i,t_i}q^{\mathcal{I}_{p_r,q_l,s_i,t_j}}$$

This identifies the geometric basis of the quantum cluster algebras introduced by Berenstein and Zelevinsky.

Mutations

Example

Riemann sphere with three holes, and two cusps on one of the holes. Frozen variables: d, e. Exchangeable variables: a, b, c.

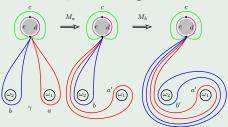


Geometric description

Mutations

Example

Riemann sphere with three holes, and two cusps on one of the holes. Frozen variables: d, e. Exchangeable variables: a, b, c.



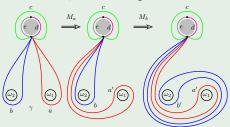
$$a'a = b^2 + c^2 + \omega_1 bc;$$
 $b'b = (a')^2 + c^2 + \omega_2 a'c.$

Mutations

Painlevé equations

Example

Riemann sphere with three holes, and two cusps on one of the holes. Frozen variables: d, e. Exchangeable variables: a, b, c.



$$a'a = b^2 + c^2 + \omega_1 bc;$$
 $b'b = (a')^2 + c^2 + \omega_2 a'c.$

 $a = g_{1_5,1_6}, \ b = g_{1_3,1_4}, \ d = g_{1_8,2_2}, \ \{a,b\} = ab, \ \{a,d\} = -\frac{ad}{2}$ (frozen variables are NOT central).

Non cusped case

Open problem: close the Poisson algebra of geodesic functions on any Riemann surface $\Sigma_{g,s}$ of genus g with s>0 holes.

Non cusped case

Open problem: close the Poisson algebra of geodesic functions on any Riemann surface $\Sigma_{g,s}$ of genus g with s>0 holes.

• Stick a cusp on one of the holes.

Open problem: close the Poisson algebra of geodesic functions on any Riemann surface $\Sigma_{g,s}$ of genus g with s > 0 holes.

Stick a cusp on one of the holes.

Geometric description

• Use a complete cusped lamination for $\Sigma_{g,s,1}$.

Non cusped case

Open problem: close the Poisson algebra of geodesic functions on any Riemann surface $\Sigma_{g,s}$ of genus g with s > 0 holes.

- Stick a cusp on one of the holes.
- Use a complete cusped lamination for $\Sigma_{g,s,1}$.
- Consider the geodesic g homotopic to the cusped hole.

Open problem: close the Poisson algebra of geodesic functions on any Riemann surface $\Sigma_{g,s}$ of genus g with s > 0 holes.

Stick a cusp on one of the holes.

Geometric description

- Use a complete cusped lamination for $\Sigma_{g,s,1}$.
- Consider the geodesic g homotopic to the cusped hole.
- The Teichmüller space for $\Sigma_{g,s}$ is the subalgebra of functions that Poisson commute with g.

Decorated character variety [Chekhov-M.M.-Rubtsov arXiv:1511.03851]

For Riemann surfaces with holes:

$$Hom(\pi_1(\Sigma), \mathbb{P}SL_2(\mathbb{C})) / GL_2(\mathbb{C}).$$

Decorated character variety [Chekhov-M.M.-Rubtsov arXiv:1511.03851]

For Riemann surfaces with holes:

$$Hom(\pi_1(\Sigma), \mathbb{P}SL_2(\mathbb{C})) / GL_2(\mathbb{C}).$$

For Riemann surfaces with holes:

$$Hom(\pi_1(\Sigma), \mathbb{P}SL_2(\mathbb{C})) / GL_2(\mathbb{C}).$$

For Riemann surfaces with bordered cusps:

• Fundamental groupoid of arcs $\mathfrak{U} = \{\text{directed paths between cusps}\}/\text{homotopy}.$

Painlevé equations

Decorated character variety [Chekhov-M.M.-Rubtsov arXiv:1511.03851]

For Riemann surfaces with holes:

$$\operatorname{{\sf Hom}}\left(\pi_1(\Sigma), \mathbb{P}\operatorname{{\sf SL}}_2(\mathbb{C})\right)/\operatorname{{\sf GL}}_2(\mathbb{C}).$$

- Fundamental groupoid of arcs $\mathfrak{U} = \{ \text{directed paths between cusps} \} / \text{homotopy.}$
- Complexify shear coordinates: $\{\Re Z_i, \Re Z_i\} = -\{\Im Z_i, \Im Z_i\} = \frac{1}{2}\{Z_i, Z_i\}_{\mathbb{R}}, \{\Re Z_i, \Im Z_i\} \equiv 0.$

Painlevé equations

Decorated character variety [Chekhov-M.M.-Rubtsov arXiv:1511.03851]

For Riemann surfaces with holes:

$$\operatorname{{\cal H}\!{\it om}}\left(\pi_1(\Sigma), \mathbb{P} \operatorname{{\it SL}}_2(\mathbb{C})\right)/\operatorname{{\it GL}}_2(\mathbb{C}).$$

- Fundamental groupoid of arcs $\mathfrak{U} = \{ \text{directed paths between cusps} \} / \text{homotopy}.$
- Complexify shear coordinates: $\{\Re Z_i, \Re Z_i\} = -\{\Im Z_i, \Im Z_i\} = \frac{1}{2}\{Z_i, Z_i\}_{\mathbb{R}}, \{\Re Z_i, \Im Z_i\} \equiv 0.$ $\operatorname{Hom}(\mathfrak{U}, SL_2(\mathbb{C}))/_{\prod_{i=1}^n B_i}$, B_j Borel subgroup in $SL_2(\mathbb{C})$.

Painlevé equations

Decorated character variety [Chekhov-M.M.-Rubtsov arXiv:1511.03851]

For Riemann surfaces with holes:

$$Hom\left(\pi_1(\Sigma), \mathbb{P}SL_2(\mathbb{C})\right)/GL_2(\mathbb{C}).$$

- Fundamental groupoid of arcs $\mathfrak{U} = \{ \text{directed paths between cusps} \} / \text{homotopy.}$
- Complexify shear coordinates: $\{\Re Z_i, \Re Z_i\} = -\{\Im Z_i, \Im Z_i\} = \frac{1}{2}\{Z_i, Z_i\}_{\mathbb{R}}, \{\Re Z_i, \Im Z_i\} \equiv 0.$ $\operatorname{Hom}(\mathfrak{U}, SL_2(\mathbb{C}))/_{\prod_{i=1}^n B_i}$, B_j Borel subgroup in $SL_2(\mathbb{C})$.

$$\mathrm{tr}_{\mathcal{K}}: \ \mathit{SL}_2(\mathbb{C}) o \mathbb{C} \ M \mapsto \mathrm{tr}(\mathit{MK}), \qquad \text{where} \ \ \mathit{K} = \left(egin{array}{cc} 0 & 0 \ -1 & 0 \end{array}
ight).$$

• A Riemann surface of genus g, n holes and k cusps on the boundary admits a complete cusped lamination of 6g - 6 + 2n + 2k arcs which triangulate it.

- A Riemann surface of genus g, n holes and k cusps on the boundary admits a complete cusped lamination of 6g 6 + 2n + 2k arcs which triangulate it.
- Any other cusped lamination is obtained by the generalised cluster algebra mutations.

- A Riemann surface of genus g, n holes and k cusps on the boundary admits a complete cusped lamination of 6g 6 + 2n + 2k arcs which triangulate it.
- Any other cusped lamination is obtained by the generalised cluster algebra mutations.
- Poisson brackets between elements in the cusped lamination are quadratic and completely combinatorial.

Painlevé equations

- A Riemann surface of genus g, n holes and k cusps on the boundary admits a complete cusped lamination of 6g - 6 + 2n + 2k arcs which triangulate it.
- Any other cusped lamination is obtained by the generalised cluster algebra mutations.
- Poisson brackets between elements in the cusped lamination are quadratic and completely combinatorial.
- λ -lengths of arcs in the cusped lamination are monomials in the exponentiated shear variables \Rightarrow Quantum cluster algebra of geometric type.

Painlevé equations

- A Riemann surface of genus g, n holes and k cusps on the boundary admits a complete cusped lamination of 6g - 6 + 2n + 2k arcs which triangulate it.
- Any other cusped lamination is obtained by the generalised cluster algebra mutations.
- Poisson brackets between elements in the cusped lamination are quadratic and completely combinatorial.
- λ -lengths of arcs in the cusped lamination are monomials in the exponentiated shear variables \Rightarrow Quantum cluster algebra of geometric type.
- Uncusped case completely characterised.

Painlevé equations

- A Riemann surface of genus g, n holes and k cusps on the boundary admits a complete cusped lamination of 6g 6 + 2n + 2k arcs which triangulate it.
- Any other cusped lamination is obtained by the generalised cluster algebra mutations.
- Poisson brackets between elements in the cusped lamination are quadratic and completely combinatorial.
- λ -lengths of arcs in the cusped lamination are monomials in the exponentiated shear variables \Rightarrow Quantum cluster algebra of geometric type.
- Uncusped case completely characterised.
- Good notion of decorated character variety.

• A Riemann surface of genus g, n holes and k cusps on the boundary admits a complete cusped lamination of 6g - 6 + 2n + 2k arcs which triangulate it.

- Any other cusped lamination is obtained by the generalised cluster algebra mutations.
- Poisson brackets between elements in the cusped lamination are quadratic and completely combinatorial.
- λ -lengths of arcs in the cusped lamination are monomials in the exponentiated shear variables \Rightarrow Quantum cluster algebra of geometric type.
- Uncusped case completely characterised.
- Good notion of decorated character variety.

Many thanks for your attention!!!