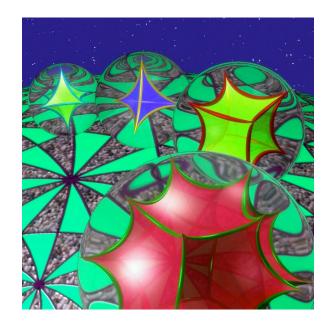
On volumes of compact and non-compact right-angled hyperbolic polyhedra

Andrei Vesnin

Sobolev Institute of Mathematics, Novosibirsk, Russia

Conference "Quantum Topology", June 21, 2016

- Uniqueness.
- 2 Existence.
- Census of bounded.
- Census of ideal.
- 6 Construction of 3-manifolds.



Konrad Polthier, Cover image of "Scientific Computing", 1999.

1. Uniqueness.

Uniqueness of acute-angled polyhedra in \mathbb{H}^n

Let \mathbb{H}^n denote an n-dimensional hyperbolic space.

Uniqueness of acute-angled polyhedra in \mathbb{H}^n

Let \mathbb{H}^n denote an n-dimensional hyperbolic space.

Andreev, 1970: Any bounded acute-angled (all dihedral angeles are at most $\pi/2$) polyhedron in \mathbb{H}^n is uniquely determined by its combinatorial type and dihedral angles.

Uniqueness of acute-angled polyhedra in \mathbb{H}^n

Let \mathbb{H}^n denote an n-dimensional hyperbolic space.

Andreev, 1970: Any bounded acute-angled (all dihedral angeles are at most $\pi/2$) polyhedron in \mathbb{H}^n is uniquely determined by its combinatorial type and dihedral angles.

We will discuss two classes of acute-angled polyhedra:

- Coxeter polyhedra, with dihedral angles π/k ;
- right-angled polyhedra, with all dihedral angled $\pi/2$.

2. Existence.

Existence of Coxeter polyhedra

Vinberg, 1985: There is no compact Coxeter polyhedra in \mathbb{H}^n for n > 29.

Existence of Coxeter polyhedra

Vinberg, 1985: There is no compact Coxeter polyhedra in \mathbb{H}^n for n > 29.

Examples are know for $n \leq 8$. The case n = 8 was done by Bugaenko, 1990.

Existence of Coxeter polyhedra

Vinberg, 1985: There is no compact Coxeter polyhedra in \mathbb{H}^n for n > 29.

Examples are know for $n \leq 8$. The case n = 8 was done by Bugaenko, 1990.

Prokhorov, 1986: There is no finite-volume Coxeter polyhedra in \mathbb{H}^n for n > 995.

Examples are known up to n=21 only:

- Vinberg, 1972 for $n \leqslant 17$;
- Vinberg, Kaplinskaja, 1978 for n = 18, 19;
- Borcherds, 1987 fo n=21.

Existence of right-angled polyhedra

For a combinatorial n-dimensional polyhedron P let $a_k(P)$ be the number of its k-dimensional faces and

$$a_k^{\ell} = \frac{1}{a_k} \sum_{\dim F = k} a_{\ell}(F)$$

be the average number of ℓ -dimensional faces in a k-dimensional subpolyhedron.

For a combinatorial n-dimensional polyhedron P let $a_k(P)$ be the number of its k-dimensional faces and

$$a_k^{\ell} = \frac{1}{a_k} \sum_{\dim F = k} a_{\ell}(F)$$

be the average number of ℓ -dimensional faces in a k-dimensional subpolyhedron.

Nikulin, 1981:

$$a_k^\ell < \binom{n-\ell}{n-k} \frac{\binom{\left\lceil \frac{n}{2}\right\rceil}{\ell} + \binom{\left\lceil \frac{n+1}{2}\right\rceil}{\ell}}{\binom{\left\lceil \frac{n}{2}\right\rceil}{k} + \binom{\left\lceil \frac{n+1}{2}\right\rceil}{k}}$$

for $\ell < k \leqslant \left[\frac{n}{2}\right]$.

For a combinatorial n-dimensional polyhedron P let $a_k(P)$ be the number of its k-dimensional faces and

$$a_k^{\ell} = \frac{1}{a_k} \sum_{\dim F = k} a_{\ell}(F)$$

be the average number of ℓ -dimensional faces in a k-dimensional subpolyhedron.

Nikulin, 1981:

$$a_k^\ell < \binom{n-\ell}{n-k} \frac{\binom{\left\lceil\frac{n}{2}\right\rceil}{\ell} + \binom{\left\lceil\frac{n+1}{2}\right\rceil}{\ell}}{\binom{\left\lceil\frac{n}{2}\right\rceil}{k} + \binom{\left\lceil\frac{n+1}{2}\right\rceil}{k}}$$

for $\ell < k \leqslant \left[\frac{n}{2}\right]$. We will use this result to estimate a_2^1 .

In particular, for a_2^1 , the average number of sides in a 2-dimensional face, we get:

$$a_2^1 < \left\{ \begin{array}{ll} 4 + \frac{4}{n-2}, & \mbox{if} & n & \mbox{is even}, \\ 4 + \frac{4}{n-1}, & \mbox{if} & n & \mbox{is odd}. \end{array} \right.$$

But we already observed that $5 \leqslant a_2^1$.

Corollary from the Nikulin inequality:

There is no compact right-angled polyhedra in \mathbb{H}^n for n > 4.

Examples for n = 3, 4 are well-known: dodecahedron and 120-cell.

Existence of finite volume right-angled polyhedra

Dufour, 2010: There is no finite volume right-angled polyhedra in \mathbb{H}^n for n > 12.

Existence of finite volume right-angled polyhedra

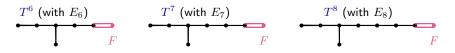
Dufour, 2010: There is no finite volume right-angled polyhedra in \mathbb{H}^n for n > 12.

Examples are known for $n \leq 8$ only.

Dufour, 2010: There is no finite volume right-angled polyhedra in \mathbb{H}^n for n > 12.

Examples are known for $n \leq 8$ only.

For n=6,7,8 consider a Coxeter tetrahedron T^n with Coxeter diagram as below. In each case "black" sub-diagram corresponds to the finite Coxeter group E_n .



Then the union

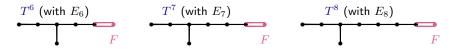
$$P^n = \bigcup_{g \in E_n} g(T)$$

is a right-angled polyhedron in \mathbb{H}^n with faces $\partial P^n = \bigcup_{g \in E_n} g(F)$.

Dufour, 2010: There is no finite volume right-angled polyhedra in \mathbb{H}^n for n > 12.

Examples are known for $n \leq 8$ only.

For n=6,7,8 consider a Coxeter tetrahedron T^n with Coxeter diagram as below. In each case "black" sub-diagram corresponds to the finite Coxeter group E_n .



Then the union

$$P^n = \bigcup_{g \in E_n} g(T)$$

is a right-angled polyhedron in \mathbb{H}^n with faces $\partial P^n = \bigcup_{g \in E_n} g(F)$.

Recall order of the above groups: $|E_6| = 72 \cdot 6!$, $|E_7| = 72 \cdot 8!$, $|E_8| = 192 \cdot 10!$.

◆□▶ ◆□▶ ◆≧▶ ◆臺▶ ■ 釣९♡

Right-angled polyhedra in \mathbb{H}^3

Pogorelov, 1967: A polyhedron can be realized in \mathbb{H}^3 as a bounded right-angled polyhedron if and only if

- 1 any vertex is incident to 3 edges;
- 2 any face has at least 5 sides;
- any simple closed circuit on the surface of the polyhedron which separate some two faces of it (prismatic circuit), intersects at least 5 edges.

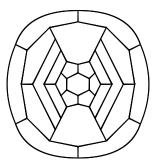
Pogorelov, 1967: A polyhedron can be realized in \mathbb{H}^3 as a bounded right-angled polyhedron if and only if

- any vertex is incident to 3 edges;
- 2 any face has at least 5 sides;
- any simple closed circuit on the surface of the polyhedron which separate some two faces of it (prismatic circuit), intersects at least 5 edges.

The simplest bounded $\pi/2$ -polyhedron in \mathbb{H}^3 is the $\pi/2$ -dodecahedron.

Non-realizable polyhedron

The following polyhedron satisfies (1) and (2), but not (3):

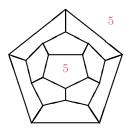


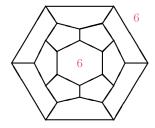
There is a closed circuit which separates two 6-gonal faces (top and bottom), but intersects only 4 edges.

3. A census of bounded right-angled polyhedra in \mathbb{H}^3 .

By Pogorelov theorem: For any integer $n\geqslant 5$ there exists a right-angled (2n+2)-hedron Rn.

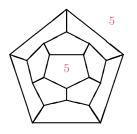
Polyhedra R5 and R6 look as the following:

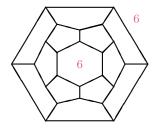




By Pogorelov theorem: For any integer $n\geqslant 5$ there exists a right-angled (2n+2)-hedron Rn.

Polyhedra R5 and R6 look as the following:





We will say Rn to be Löbelll polyhedra. Frank Richard Löbell (1893 – 1964).

Why this infinite family is important?

Two moves for bounded right-angled polyhedra

Let \mathcal{R} be the set of all bounded right-angled polyhedra in \mathbb{H}^3 .

Two moves for bounded right-angled polyhedra

Let $\mathcal R$ be the set of all bounded right-angled polyhedra in $\mathbb H^3$.

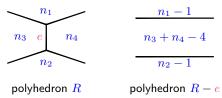
Inoue, 2008: Two moves on \mathcal{R} .

• Composition / Decomposition: Let $R_1, R_2 \in \mathcal{R}$; $F_1 \subset R_1$ and $F_2 \subset R_2$ be a pair of k-gonal faces. Then a composition is $R = R_1 \cup_{F_1 = F_2} R_2$.

Let $\mathcal R$ be the set of all bounded right-angled polyhedra in $\mathbb H^3$.

Inoue, 2008: Two moves on \mathcal{R} .

- Composition / Decomposition: Let $R_1, R_2 \in \mathcal{R}$; $F_1 \subset R_1$ and $F_2 \subset R_2$ be a pair of k-gonal faces. Then a composition is $R = R_1 \cup_{F_1 = F_2} R_2$.
- Edge surgery: combinatorial transformation from R to R e:



If $R \in \mathcal{R}$ and e is such that faces F_1 and F_2 have at least 6 sides each and e is not a part of prismatic 5-circuit, then $R - e \in \mathcal{R}$.

Inoue, 2008: For any $P_0 \in \mathcal{R}$ there exists a sequence of unions of right-angled hyperbolic polyhedra P_1, \ldots, P_k such that:

- ullet each set P_i is obtained from P_{i-1} by decomposition or edge surgery,
- ullet any union P_k consists of Löbell polyhedra.

Moreover,

$$\operatorname{vol}(P_0) \geqslant \operatorname{vol}(P_1) \geqslant \operatorname{vol}(P_2) \geqslant \ldots \geqslant \operatorname{vol}(P_k).$$

The volume formula for Löbell polyhedra

Volumes of hyperbolic 3-polyhedra can be done in terms of the Lobachevsky function

$$\Lambda(\theta) = -\int_{0}^{\theta} \log|2\sin(t)| dt.$$

Volumes of hyperbolic 3-polyhedra can be done in terms of the Lobachevsky function

$$\Lambda(\theta) = -\int_{0}^{\theta} \log|2\sin(t)| dt.$$

V., 1998: For any $n \geqslant 5$ the following formula holds for volumes of Löbell polyhedra

$$vol(Rn) = \frac{n}{2} \left(2\Lambda(\theta_n) + \Lambda\left(\theta_n + \frac{\pi}{n}\right) + \Lambda\left(\theta_n - \frac{\pi}{n}\right) + \Lambda\left(\frac{\pi}{2} - 2\theta_n\right) \right),$$

where

$$\theta_n = \frac{\pi}{2} - \arccos\left(\frac{1}{2\cos(\pi/n)}\right).$$

The census of bounded right-angled polyhedra

Inoue, 2008: The dodecahedron R5 and the Löbell polyhedron R6 are the first and the second smallest volume bounded right-angled hyperbolic polyhedra.

The census of bounded right-angled polyhedra

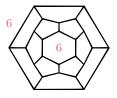
Inoue, 2008: The dodecahedron R5 and the Löbell polyhedron R6 are the first and the second smallest volume bounded right-angled hyperbolic polyhedra.

Shmel'kov - V., 2011: The first eleven smallest volume bounded right-angled hyperbolic polyhedra:

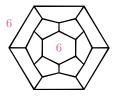
1	4.3062	R5	7	8.6124	$R5 \cup R5$
2	6.0230	R6	8	$8.6765\ldots$	$R6_{3}^{3}$
3	6.9670	$R6^1$	9	8.8608	$R6_1^3$
4	$7.5632\dots$	R7	10	8.9456	$R6_{2}^{3}$
5	7.8699		11	9.0190	R8
6	8.0002	$R6_{2}^{2}$			

Applying edge surgeries

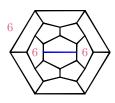
The polyhedron R6 and possible faces to apply surgeries:



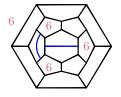
The polyhedron R6 and possible faces to apply surgeries:

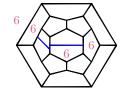


The polyhedron $R6^1$ (obtained from R6) and possible faces to apply surgeries:

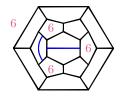


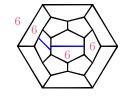
Polyhedra $R6_1^2$ and $R6_2^2$ obtained from $R6^1$ by edge surgeries.



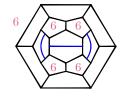


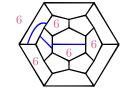
Polyhedra $R6_1^2$ and $R6_2^2$ obtained from $R6^1$ by edge surgeries.

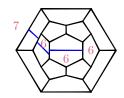




There are few possibilities to apply edge surgeries to them. Polyhedra $R6_1^3$, $R6_2^3$ and $R6_3^3$ (= $R7^1$):





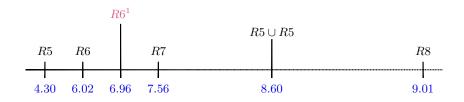


The set of volumes of bounded right-angled polyhedra

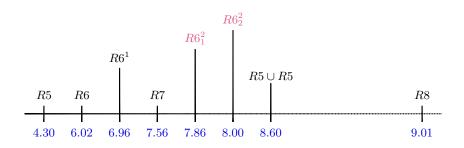
Löbell polyhedra:

Composition of R5 with R5:

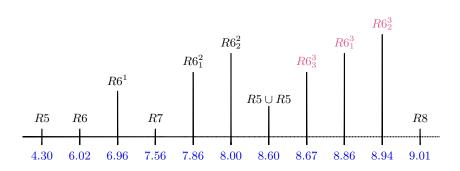
Edge surgery on R6:



Edge surgeries on $R6^1$:



Edge surgery on $R6_1^2$ and $R6_2^2$:



Volume bounds from combinatorics of the polyhedra

Atkinson, 2009: Let ${\cal P}$ be a bounded right-angled hyperbolic polyhedron with ${\cal V}$ vertices. Then

$$(V-2) \cdot \frac{v_8}{32} \le \text{vol}(P) < (V-10) \cdot \frac{5v_3}{8},$$

where $v_8=3.66\dots$ is the maximal octahedron volume and $v_3=1.014\dots$ is the maximal tetrahedron volume.

Atkinson, 2009: Let P be a bounded right-angled hyperbolic polyhedron with V vertices. Then

$$(V-2) \cdot \frac{v_8}{32} \le \text{vol}(P) < (V-10) \cdot \frac{5v_3}{8},$$

where $v_8 = 3.66...$ is the maximal octahedron volume and $v_3 = 1.014...$ is the maximal tetrahedron volume.

From the above census: If P is differ from the eleven smallest volume polyhedra then

$$\max\{(V-2)\cdot \frac{v_8}{32}, 9.019053\ldots\} \le \text{vol}(P)$$

and

$$\max\{(F-3)\cdot \frac{v_8}{16}, 9.019053\ldots\} \leqslant \text{vol}(P).$$

This improves Atkinson's low bound for $V \leq 80$ and $F \leq 42$.

◆□ > ◆□ > ◆豊 > ◆豊 > 豊 めので

The recent census of bounded right-angled polyhedra

Inoue, arxiv:1512.0176:

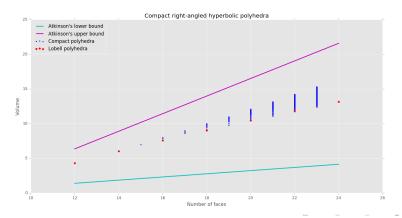
The first 825 bounded right-angled polyhedra are constructed by compositions and edge surgeries. The 825th smallest right-angled polyhedron has volume 13.4203...

The recent census of bounded right-angled polyhedra

Inoue, arxiv:1512.0176:

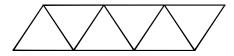
The first 825 bounded right-angled polyhedra are constructed by compositions and edge surgeries. The 825th smallest right-angled polyhedron has volume $13.4203\ldots$

Shmel'kov – V.: about 3.000 smallest compact right-angled polyhedra.



4. A census of ideal right-angled polyhedra.

Let A_n , $n \ge 3$, be an ideal (with all vertices at infinity) n-antiprism in \mathbb{H}^3 with dihedral angles $\pi/2$. See the figure, where left and right sides assumed to be identified.

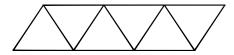


In particular, the 3-antiprism is an octahedron.

It is known that

$$\operatorname{vol}(\mathcal{A}_n) = 2n \left[\Lambda \left(\frac{\pi}{4} + \frac{\pi}{2n} \right) + \Lambda \left(\frac{\pi}{4} - \frac{\pi}{2n} \right) \right].$$

Let A_n , $n \ge 3$, be an ideal (with all vertices at infinity) n-antiprism in \mathbb{H}^3 with dihedral angles $\pi/2$. See the figure, where left and right sides assumed to be identified.



In particular, the 3-antiprism is an octahedron.

It is known that

$$\operatorname{vol}(\mathcal{A}_n) = 2n \left[\Lambda \left(\frac{\pi}{4} + \frac{\pi}{2n} \right) + \Lambda \left(\frac{\pi}{4} - \frac{\pi}{2n} \right) \right].$$

Why this family of polyhedra is important for us?

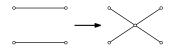
Moves on ideal polyhedra

Let ${\mathcal A}$ be the set of all ideal right-angled polyhedra in ${\mathbb H}^3.$

Let A be the set of all ideal right-angled polyhedra in \mathbb{H}^3 .

Define a move on A. Let $A \in A$.

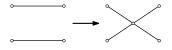
• Edge twisting: combinatorial transformation from A to A^* :



Let A be the set of all ideal right-angled polyhedra in \mathbb{H}^3 .

Define a move on A. Let $A \in A$.

• Edge twisting: combinatorial transformation from A to A^* :



Shmel'kov - V.:

- If $A \in \mathcal{A}$ then $A^* \in \mathcal{A}$.
- The volume increases under an edge twisting move.
- Every ideal right-angled polyhedron $A \in \mathcal{A}$ can be constructed by a finitely many edge twisting moves from an n-antiprism \mathcal{A}_n for some n.

Census of ideal right-angled polyhedra

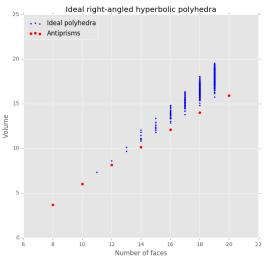
Corollary: The octahedron \mathcal{A}_3 and polyhedron \mathcal{A}_4 are the first and the second smallest volume ideal right-angled polyhedra.

Corollary: The octahedron A_3 and polyhedron A_4 are the first and the second smallest volume ideal right-angled polyhedra.

Let A be an \mathcal{A} -polyhedron which volume is no more than $\operatorname{vol}(\mathcal{A}_7) = 12.106298\dots$ Then A is contained in the following list of pairwise non-isometric polyhedra:

1	3.6638	\mathcal{A}_3	11	10.9915	$A_5^{**}(6)$
2	6.0230	\mathcal{A}_4	12	11.1362	$A_5^{**}(5)$
3	7.3277	\mathcal{A}_4^*	13	11.1362	$A_5^{**}(2)$
4	8.1378	\mathcal{A}_5	14	11.4472	$A_5^{**}(3)$
5	8.6124	\mathcal{A}_4^{**}	15	11.8017	$A_4^{****}(1)$
6	9.6869	\mathcal{A}_5^*	16	11.8017	$A_6^*(1)$
7	10.1494	\mathcal{A}_4^{***}	17	12.0460	$A_4^{****}(2)$
8	10.1494	\mathcal{A}_6	18	12.0460	$A_6^*(2)$
9	10.8060	$A_5^{**}(1)$	19	12.1062	\mathcal{A}_7
10	10.9915	$A_5^{**}(4)$			

Shmel'kov – V.: about 2.000 smallest ideal right-angled polyhedra.



5. Constructing hyperbolic 3-manifolds from right-angled polyhedra.

Suppose

- P be a bounded $\pi/2$ -polyhedron in \mathbb{H}^3 ;
- G be the group generated by reflections in faces of P.

Consider *P* as a Coxeter orbifold.

For each vertex v of P its stabilizer in G is isomorphic to the eight-element abelian group $(\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}_2^3$.

This group can be regarded as the finite vector space over the field GF(2) with a basis

$$\{(1,0,0),(0,1,0),(0,0,1)\}.$$

Local linear independence

Al-Jubouri, 1980: The kernel $\operatorname{Ker} \varphi$ of an epimorphism $\varphi: G \to \mathbb{Z}_2^3$ is torsion-free if and only if for any vertex v of P images of reflections in faces incident to v are linearly independent in \mathbb{Z}_2^3 .

Therefore, if φ satisfies this "local linear independence" property then $M=\mathbb{H}^3/{\rm Ker}\,\varphi$ is a closed hyperbolic 3-manifold (orientable or non-orientable) constructed from eight copies of P.

Four colors

Elements $\alpha=(1,0,0)$, $\beta=(0,1,0)$, $\gamma=(0,0,1)$ and $\delta=\alpha+\beta+\gamma=(1,1,1)$ are such that any three of them are linearly independent in \mathbb{Z}_2^3 .

Four colors

Elements $\alpha=(1,0,0)$, $\beta=(0,1,0)$, $\gamma=(0,0,1)$ and $\delta=\alpha+\beta+\gamma=(1,1,1)$ are such that any three of them are linearly independent in \mathbb{Z}_2^3 .

V., 1987: If $\varphi:G\to\mathbb{Z}_2^3$ is such that for any generator g of G its image $\varphi(g)$ belongs to $\{\alpha,\beta,\gamma,\delta\}$ then $\operatorname{Ker}\varphi$ does not contain orientation-reversing elements.

Elements $\alpha=(1,0,0)$, $\beta=(0,1,0)$, $\gamma=(0,0,1)$ and $\delta=\alpha+\beta+\gamma=(1,1,1)$ are such that any three of them are linearly independent in \mathbb{Z}_2^3 .

V., 1987: If $\varphi:G\to\mathbb{Z}_2^3$ is such that for any generator g of G its image $\varphi(g)$ belongs to $\{\alpha,\beta,\gamma,\delta\}$ then $\operatorname{Ker}\varphi$ does not contain orientation-reversing elements.

Corollary: If an epimorphism $\varphi:G
ightarrow \mathbb{Z}_2^3$ is such that

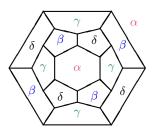
- for any generator g of G its image $\varphi(g)$ belongs to $\{\alpha, \beta, \gamma, \delta\}$;
- for any two adjacent faces their images are different;

then $M=\mathbb{H}^3/\mathrm{Ker}\,\varphi$ is a closed orientable hyperbolic 3-manifold.

Thus any 4-coloring of faces of P defines a closed orientable hyperbolic 3-manifold.

- 4 □ ト 4 圖 ト 4 ≣ ト - ■ - 夕 Q (~)

The Löbell manifold (the first example of closed orientable hyperbolic 3-manifold) can be obtained from the following 4-coloring of R6:



[F. Löbell, Beispiele geschlossene dreidimensionaler Clifford–Kleinischer Räume negative Krümmung, Ber. Verh. Sächs. Akad. Lpz., Math.-Phys. Kl. 83 (1931), 168–174.]

When two 4-colorings induce homeomorphic manifolds?

Let $P \in \mathcal{R}$; G be generated by reflections in faces of P; Σ be the symmetry group of P.

A group G is said to be naturally maximal if $\langle G, \Sigma \rangle$ is a maximal discrete group, i.e. is not a proper subgroup of any discrete group of isometries of \mathbb{H}^3 .

V.: Let G be a non-arithmetic naturally maximal group. Let $\varphi_1, \varphi_2: G \to \mathbb{Z}_2^3$ be epimorphisms induced by two 4-colorings. Manifolds $\mathbb{H}^3/\operatorname{Ker}(\varphi_1)$ and $\mathbb{H}^3/\operatorname{Ker}(\varphi_2)$ are homeomorphic if and only if 4-colorings are symmetric under the group Σ action.

When two 4-colorings induce homeomorphic manifolds?

Let $P \in \mathcal{R}$; G be generated by reflections in faces of P; Σ be the symmetry group of P.

A group G is said to be naturally maximal if $\langle G, \Sigma \rangle$ is a maximal discrete group, i.e. is not a proper subgroup of any discrete group of isometries of \mathbb{H}^3 .

V.: Let G be a non-arithmetic naturally maximal group. Let $\varphi_1, \varphi_2: G \to \mathbb{Z}_2^3$ be epimorphisms induced by two 4-colorings. Manifolds $\mathbb{H}^3/\operatorname{Ker}(\varphi_1)$ and $\mathbb{H}^3/\operatorname{Ker}(\varphi_2)$ are homeomorphic if and only if 4-colorings are symmetric under the group Σ action.

Example. Let Rn be the Löbell polyhedron and G(n) be generated by its reflections.

- It $n \neq 5, 6, 7, 8, 10, 12, 18$ then group G(n) is non-arithmetic (follows from Takahashi's classification of arithmetic triangle groups);
- ② By Mednykh's result, if $n \ge 6$ then G(n) is naturally maximal.

Hyperelliptic manifolds

An n-dimensional manifold M^n is said to be hyperelliptic if it has an involution τ such that $M^n/\langle \tau \rangle$ is homeomorphic to S^n .

Such an involution au is said to be a hyperelliptic involution.

If M^n has a geometric structure, we assume that τ is an isometry.

We will discuss the case of hyperbolic 3-manifolds.

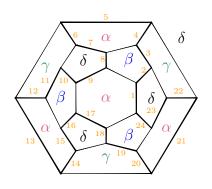
Reni – Zimmermann, 2001: If 3-manifold is hyperbolic then it has at most 9 hyperelliptic involutions.

Hamiltonian cycles and hyperelliptic 3-manifolds

The following result gives a way to construct hyperbolic hyperelliptic 3-manifolds from bounded right-angled polyhedra.

Mednykh – V.: Let P be a bounded right-angled polyhedron in \mathbb{H}^3 and $\Delta(P)$ be the group generated by reflections in faces of P. Assume that P is Hamiltonian. Then there exists a subgroup $\Gamma \triangleleft \Delta(P)$ of index $|\Delta(P):\Gamma|=8$ acting on \mathbb{H}^3 without fixed points such that the quotient space $M^3=\mathbb{H}^3/\Gamma$ is a hyperelliptic manifold.

Consider a Hamiltonian cycle $\mathcal C$ on the Löbell polyhedron R6 and enumerate its edges: $1,2,\ldots,24$. The closed curve $\mathcal C$ divides the surface R6 into two regions. Let us color faces of the first region by colours α and β , and faces of the second region by colors γ and δ .



colors of faces:

$$\alpha = (1, 0, 0), \ \beta = (0, 1, 0),$$

 $\gamma = (0, 0, 1), \ \delta = (1, 1, 1);$

colors of edges:

$$a = \alpha + \gamma = \beta + \delta = (1, 0, 1)$$

$$b = \alpha + \delta = \beta + \gamma = (0, 1, 1)$$

$$c = \alpha + \beta = \gamma + \delta = (1, 1, 0)$$

Colorings of faces and edges induce epimorphisms

$$\varphi: \Delta(P) \longrightarrow \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 = \langle \alpha, \beta, \gamma, \delta \rangle$$

and

$$\psi: \Delta^+(P) \longrightarrow \mathbb{Z}_2 \oplus \mathbb{Z}_2 = \langle a, b, c \rangle.$$

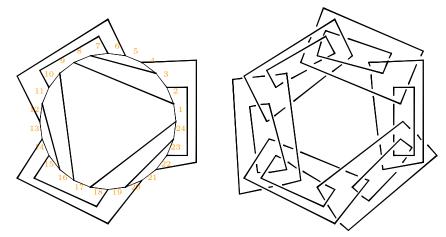
Denote $\Gamma = \operatorname{Ker} \varphi = \operatorname{Ker} \psi$ and $\Gamma_1 = \psi^{-1}(c)$, where the color "c" is associated with edges not belonging to the Hamiltonian cycle. Then

$$M = \mathbb{H}^3/\Gamma \stackrel{2}{\longrightarrow} \mathbb{H}^3/\Gamma_1 \stackrel{2}{\longrightarrow} \mathbb{H}^3/\Delta^+(P) \stackrel{2}{\longrightarrow} \mathbb{H}^3/\Delta(P).$$

The quotient space \mathbb{H}^3/Γ_1 is homeomorphic to S^3 . Thus, M is a hyperelliptic manifold.

The branching set

To describe branching set let us redraw the Hamiltonian cycle as a circle. M is the 2-fold branched covering of S^3 branched over the 12-component link formed by preimage of edges of color "c".



Thank you!