Omega-limit sets of generic points of partially hyperbolic diffeomorphisms

S. S. Minkov, A. V. Okunev

Moscow Center for Continuous Mathematical Education, Moscow, Russia National Research University Higher School of Economics, Moscow, Russia stanislav.minkov@yandex.ru, aokunev@list.ru

We prove that for any $E^u \oplus E^{cs}$ -partially hyperbolic C^2 -diffeomorphism the ω -limit set of a generic (with respect to the Lebesgue measure) point is saturated by the unstable leaves. As a corollary we prove a conjecture from a paper by Ilyashenko (2011) that the Milnor attractor is saturated by the unstable leaves. This property was used by Ilyashenko to prove that there exists a locally generic set of boundary preserving diffeomorphisms of $[0,1] \times \mathbb{T}^2$ with "thick" Milnor attractors.

Definition 1. For a diffeomorphism F of a Riemannian manifold X the Milnor attractor (notation: $A_M(F)$ or A_M) is the smallest invariant closed set that contains the ω -limit sets of almost all points with respect to the Lebesgue measure on X.

Consider is a Riemannian manifold M, possibly with a boundary. The metric induces the Lebesgue measure on M.

Definition 2. A diffeomorphism $F \colon M \to M$ is called $E^u \oplus E^{cs}$ -partially hyperbolic if there exist $\lambda > 1, \mu < \lambda, \ c > 0$ and two invariant distributions $E_x^{cs} \subset T_x M$ and $E_x^u \subset T_x M$, (i.e., $dF_x(E_x^{cs,u}) = E_{F(x)}^{cs,u}$) and

$$T_x M = E_x^{cs} \oplus E_x^u,$$

$$||dF_x^n|_{E_x^{cs}}|| \le c\mu^n, \quad ||dF^{-n}|_{E_x^u}|| \le c\lambda^{-n}.$$

Theorem. Let $F: M \to M$ be a $E^u \oplus E^{cs}$ partially hyperbolic C^2 -diffeomorphism. Then the ω -limit set of almost any point with respect to the Lebesgue measure is saturated by the unstable leaves (i.e. it either contains an entire leaf or does not intersect it).

References

 Bonatti C., Diaz L.J., Viana M. Dynamics beyond uniform hyperbolicity. Springer, 2004.

- 2. *Ilyashenko Yu.S.* Thick attractors of boundary preserving diffeomorphisms // Indag. Math. 2011. V. 22, N 3–4. P. 257–314.
- 3. $Kudryashov\ Yu.G.$ Bony attractors in higher dimensions: E-print. arXiv: 1305.3889v1.
- 4. $Pesin\ Ya.$ Lectures on partial hyperbolicity and stable ergodicity. Eur. Math. Soc., 2004