Security Level:

Optimization in Radio Resource Management

Dmitrii Minenkov, Huawei, Russian Research Center

www.huawei.com

Introduction: who we are?

One of core business: serving operators

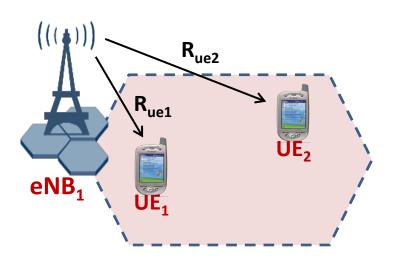
Huawei LTE Base station with several antennas

Our Customers

Content

- Scheduler
- Power control
- Overview and Outlook

1. Scheduling in Downlink.



User (UE) n has data rate R_n and average rate X_n (exponential moving average)

$$X_n(t+1) =$$

$$= X_n(t) + \beta \left(R_n(t) - X_n(t) \right)$$

Scheduler problem: which UE to serve each 1 ms?

1. "Max Rate".

If we want to maximize total throughput $U = \sum_k R_k$ we serve UE n with maximal rate: $R_n = \max_k R_k$.

- -- It doesn't consider fairness: UE with low R won't be served.
- 2. "Round Robin".

To give equal amount of resources we serve each 1 ms different UE

-- It doesn't consider changing rate R(t) and is not efficient.

Proportional Fair scheduler.

3. **"PF"**.

We serve UE *n* with maximal metric R_n / X_n .

-- It cares about fairness by using X_n and significantly exploits fast fading effect by using R_n .

Consider Utility
$$U = \sum_{n} \log X_n$$
.

PF seems to be the gradient ascend for *U* as

$$\dot{U}(t) = \sum_{n} \frac{\dot{X}_{n}(t)}{X_{n}(t)} \approx \frac{R_{k}(t)}{X_{k}(t)},$$

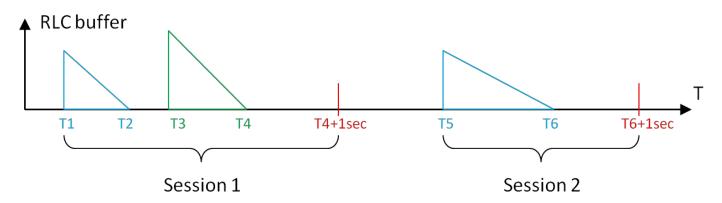
where $k = \operatorname{argmax}_n R_n / X_n$.

Theorem (Kelly, Kushner-Whiting, Agrawal-Subramanian, Stolyar...). In the case of Full buffer (all UE have infinitely large needs), PF is asymptotically optimal wrt sum-log Utility as $t \rightarrow \infty$.

Packets and stochastic statement.

In many cases **Full buffer** is not adequate.

Bursty traffic (aka finite buffer model) models are required.



Stochastic statement:

UE *n* gets files of size A_n^p ,

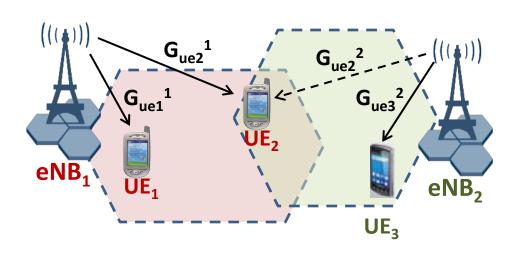
Time intervals between packets T_n^p are random variables.

Data rates $R_n(t)$ are random values.

Depends on scheduler serving times are dT_n^p .

Utility to be maximized is Download rate: $U = \sum_{n=0}^{\infty} \frac{A_n}{dT_n^p}$

2. Power control vs Interference.



Interference =
noise signal from neighbor cells

Data rate *R* can be estimated by Shannon law:

$$R_n^c = BW^c \ln(1 + SINR_n^c)$$

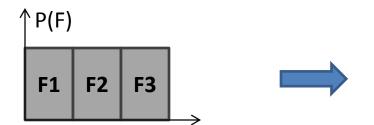
where BW^c – bandwidth of cell c (number of resource blocks), $SINR_n^c$ – signal to noise and interference ratio for UE n in cell c,

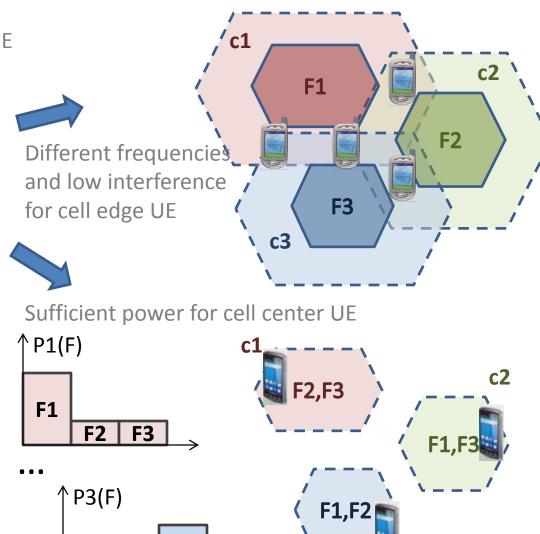
$$SINR_n^c = \frac{Signal_n^c}{noise + \sum_{c_1 \neq c} Signal_n^{c_1}} = \frac{G_n^c P^c}{noise + \sum_{c_1 \neq c} G_n^{c_1} P^{c_1}}$$

 G_n^c – channel (*c-to-n*) gain, P^c – cell *c* power.

Interference cancelation idea: frequency reuse

Unnecessary high power for cell center UE and large interference for cell edge UE





F3

F2

Power control statement.

Power control maximizes the network Utility

$$U(X) = \sum_{c=1}^{C} U^{c} = \sum_{c=1}^{C} \sum_{n=1}^{N_{c}} \log X_{n}^{c}$$

with respect to cell powers $P^c \le P^{max}$ on the period of hundreds (thousands) of scheduler times.

Applying Shannon law $R = \log(1 + SINR)$ to U(X) we have

$$U(P) = \sum_{c=1}^{C} \sum_{n=1}^{N_c} \log \left(\mu_n^c \, \text{BW}^c \, \log \left(1 + \frac{G_n^c \, P^c}{N + \sum_{c_1 \neq c} G_n^{c_1} \, P^{c_1}} \right) \right)$$

where μ_n^c are the fractions of resources that UE n gets in cell c: $\sum_{n=1}^{\infty} \mu_n^c < 1$.

 μ_n^c depends on Scheduler and generally speaking on Power control.

Decentralized solution (Stolyar).

$$U^{c} = \sum_{n=1}^{N_{c}} \log X_{n}^{c} = \sum_{n=1}^{N_{c}} \log(\mu_{n}^{c} R_{n}^{c}), \qquad R_{n}^{c} = \log\left(1 + \frac{G_{n}^{c} P^{c}}{N + \sum_{c_{1} \neq c} G_{n}^{c_{1}} P^{c_{1}}}\right)$$

$$= \log \left(1 + \frac{G_n^c P^c}{N + \sum_{c_1 \neq c} G_n^{c_1} P^{c_2}} \right)$$

Derivation of
$$U^c$$
 wrt self power:

$$\frac{\partial U^c}{\partial P^c} = \sum_{n=1}^{N_c} \frac{1}{X_n^c} \mu_n^c \frac{\partial R_n^c}{\partial P^c} = \sum_{n=1}^{N_c} \frac{1}{X_n^c} \mu_n^c \frac{G_n^c}{1 + \text{SINR}_n^c} > 0$$

Derivation of
$$U^c$$
 wrt interf power:

Derivation of
$$U^c$$
 wrt interf power:
$$\frac{\partial U^c}{\partial P^{c_1}} = \sum_{n=1}^{N_c} \frac{1}{X_n^c} \mu_n^c \frac{\partial R_n^c}{\partial P^{c_1}} = \sum_{n=1}^{N_c} \frac{1}{X_n^c} \mu_n^c \frac{-G_n^c P^c G_n^{c_1}}{1 + \text{SINR}_n^c} \left(\frac{\text{SINR}_n^c}{G_n^c P^c}\right)^2 < 0$$

Derivation of
$$U^{c1}$$
 wrt interf power: $\frac{\partial U^{c_1}}{\partial P^c} = \sum_{n=1}^{N_{c_1}} \frac{1}{X_n^{c_1}} \mu_n^{c_1} \frac{\partial R_n^{c_1}}{\partial P^c} = \sum_{n=1}^{N_{c_1}} \frac{1}{X_n^{c_1}} \mu_n^{c_1} \frac{-G_n^{c_1} P^{c_1} G_n^c}{1 + \text{SINR}_n^{c_1}} \left(\frac{\text{SINR}_n^{c_1}}{G_n^{c_1} P^{c_1}} \right)^2 < 0$

Coordination: information transfer between cells.

On cell c following values are known: X_n^c , G_n^c , G_n^{c1} , SINR, G_n^c , and $\mu_n^c = f(P)$ is estimated, so both dU^c / dP^c and dU^c / dP^{c1} can be calculated.

Greedy gradient algorithm.

If all neighbor cells c_1 transfer to cell c their dU^{c1}/dP^{c} then cell c can calculate network utility derivation dU / dP^c and increase/decrease its power P^c correspondingly to its sign. It's a separate complicated problem

Overview

- Mathematics and theorems do bring money
- And don't forget about fairness

Outlook

 Many complicated interesting problems are waiting for you