Multivariate Distributions: Moment Problems

Jordan Stoyanov

Bulgarian Academy of Sciences and Newcastle University-UK

e-mail: stoyanovj@gmail.com

Moscow State University, Department of Probability Theory 11 October 2017, 16:45 – 17:45

PLAN:

Discussion on recent works on probability distributions in dimension $n \ge 2$ and their characterization as being unique (M-determinate) or non-unique (M-indeterminate) in terms of the moments.

We use standard notations and terminology, as in the 1-dimensional case.

Picture Today:

Analytic (real and complex analysis): Petersen (1982), Berg-Thill (1991), Schmüdgen-Putinar (2008)

Not too much done/known for multivariate distributions ..:

Paper: C. Kleiber & JS (2013), J. Multivariate Analysis + a few references therein

Multivariate Distributions: Moment Problem

Random vector $X = (X_1, ..., X_n) \in \mathbb{R}^n$, $n \ge 2$, with arbitrary d.f.

$$F(x) = \mathbf{P}[X \leq x], x = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Later we specify the dependence structure of X.

We assume the absolute integrability $(k_j \text{ are in } \mathbb{N}_0)$:

$$\mathbf{E}[|X_1^{k_1} \cdots X_n^{k_n}|] = \int_{\mathbb{R}^n} |x_1^{k_1} \cdots x_n^{k_n}| dF(x) < \infty \text{ for all } k_j \ge 0, \ j = 1, ..., n.$$

Introduce the multi-indexed moments (or, mixed moments)

$$m_{k_1,...,k_n} = \mathbf{E}[X_1^{k_1} \cdots X_n^{k_n}], k_j \ge 0, j = 1,...,n.$$

They are finite, the collection $\{m_{k_1,\ldots,k_n}\}$ is the moment sequence of X.

If F is the only n-dim. d.f. with the moments $\{m_{k_1,...,k_n}\}$, F is M-det. Equivalently, we say also that the random vector X is M-det (because of one of the Kolmogorov theorems).

If the moments $\{m_{k_1,...,k_n}\}$ do not determine uniquely F, F is M-indet. In such a case we have to write at least one n-dim. d.f., G, such that

$$F \neq G$$
, but $m_{k_1,...,k_n}(F) = m_{k_1,...,k_n}(G)$ for all $k_j \geq 0, \ j = 1,...,n$.

If all components of $X = (X_1, ..., X_n)$ are positive, $X \in (\mathbb{R}_+)^n$, we call this **Stieltjes moment problem**.

Otherwise, it is **Hamburger moment problem**.

Question: When is F M-det, and when M-indet?

No reasonable answer. There are some uncheckable conditions.

This is why the main attention is on conditions, which are only sufficient or only necessary for either F to be M-det, or M-indet.

Cramér-Wold: For a random vector $X \sim F$ on \mathbb{R}^n , let the m.g.f. exist:

$$M(t) = \mathbf{E}[e^{\langle t, X \rangle}] < \infty \text{ for } t \in (-t_0, t_0) \subset \mathbb{R}^n, \ t_0 > 0 \text{ (light tails)}.$$

Then, two statements hold:

- All multi-indexed moments $m_{k_1,...,k_n}$ of X are finite. (diff., t=0)
- The d.f. F and the random vector X are M-det.

If no m.g.f., F has **heavy tails**, and F is either M-det, or M-indet.

Consider the components X_1, \ldots, X_n of the vector $X \in \mathbb{R}^n$ and let F_1, \ldots, F_n be the corresponding marginal 1-dim. d.f.s. We have

$$X_1 \sim F_1, \ldots, X_n \sim F_n.$$

The existence of the moments of X implies that each X_j has finite moments, say $m_{j,k_j} = \mathbf{E}[X_i^{k_j}], \ j=1,\ldots,n, \ k_j \geq 0.$

Corollary: If $X \in \mathbb{R}^n$ has a m.g.f., then each of the r.v.s X_1, \ldots, X_n also has a m.g.f. Hence each of X_1, \ldots, X_n is M-det.

E.g., X_1 is the only r.v. with moments $\{m_{1,k_1}, k_1 \geq 0\}$.

The converse is also true: If each X_j has a m.g.f., j = 1, ..., n, then the random vector X obeys a m.g.f., and hence X is M-det, in \mathbb{R}^n .

Notice, both these are true for any dependence structure of X.

Carleman's condition: In dim. 1, most useful. Analog in dim. $n \ge 2$.

Start with 1-dim. r.v. $\xi \sim G$, $m_k = \mathbf{E}[\xi^k]$, $k = 1, 2, \ldots$ Depending on the support, \mathbb{R}^1 or \mathbb{R}_+ , we define the following series:

$$\mathsf{C} = \sum_{k=1}^{\infty} \frac{1}{(m_{2k})^{1/2k}}, \qquad \mathsf{C} = \sum_{k=1}^{\infty} \frac{1}{(m_k)^{1/2k}}.$$

Theorem: $C = \infty \Rightarrow G$ is M-det. (Only sufficient.)

Proofs by Carleman (1926), Koosis (1979) use quasi-analytic functions.

Remark: There is a result using the converse to Carleman's condition, i.e., assuming that $C < \infty$. Under an additional condition, G will be M-indet. (Due to P. Koosis, A. Pakes, G.D. Lin.) This is only in dim. 1.

Question: Can we find an analog of Carleman's condition in dim. $n \ge 2$? Answer is "yes", however first we comment on this condition in dim. 1.

How does Carleman's condition imply M-uniqueness?

Idea: Method of metric distances (V. Zolotarev, S. Rachev).

 $\mathcal{D}=$ all d.f.s (on the real line), metric, d(F,G) between $F,G\in\mathcal{D}$. Then:

- (a) d(F,G) is symmetric; (b) d(F,G) satisfies the triangle inequality;
- (c) $d(F,G) = 0 \iff F = G$.

Work by Lev Klebanov et al. ~ 1982. Assume d(F, G) is the Lévy metric, or the Kolmogorov (uniform) metric.

Result: Let F and G have finite all moments and the first 2n coincide: $m_k(F) = m_k(G) = m_k, \ k = 1, 2, ..., 2n$. Denote $C_n = \sum_{k=1}^n (m_{2k})^{-1/2k}$.

$$d(F,G) \le K_2 \frac{\log(1+C_{n-1})}{(C_{n-1})^{1/4}}$$
 (here $K_2 = K_2(m_1,m_2)$).

Corollary: If $C = \sum_{k=1}^{\infty} (m_{2k})^{-1/2k} = \infty$ (Carleman's condition), then $C_n \to \infty$, as $n \to \infty$, and, see (c), $d(F, G) \to 0 \Rightarrow F = G$.

Result coming soon: (K. Lykov, TPA, no. 4 (2017)):

Theorem: Suppose the r.v. ξ has all moments finite. Then:

- ξ is a sum of two r.v.s, ξ_1 and ξ_2 , whose supports are disjoint;
- the moments of each of ξ_1 and ξ_2 satisfy Carleman's condition (!), hence, each of ξ_1 and ξ_2 is M-det.

Notice, if ξ itself is M-det, there is nothing to prove.

Interesting is that ξ with finite moments being M-indet (we do not specify how), has the above decomposition as a sum of two r.v.s each being M-det (here we do specify, M-det, by Carleman's condition).

Warning: Writing $\xi = \xi_1 + \xi_2$, the Carleman's condition holds for ξ_1 and ξ_2 , but not for ξ . Or: a linear combination of two Carleman sequences is not always a Carleman sequence. Similarly, for a product.

Carleman's Condition in Dimension *n*:

We need the numbers M_{2k} and M_k , for F on \mathbb{R}^n and \mathbb{R}^n_+ :

$$M_{2k} = m_{2k,0,...,0} + m_{0,2k,0,...,0} + ... + m_{0,0,...,0,2k}$$
 (Hamburger),

$$M_k = m_{k,0,...,0} + m_{0,k,0,...,0} + ... + m_{0,0,...,0,k}$$
 (Stieltjes).

Now the n-Carleman quantity is defined, respectively, as follows:

$$C = \sum_{k=1}^{\infty} \frac{1}{(M_{2k})^{1/2k}}$$
 and $C = \sum_{k=1}^{\infty} \frac{1}{(M_k)^{1/2k}}$.

Theorem: $C = \infty \Rightarrow$ the *n*-dimensional d.f. F is M-det.

If n-Carleman holds for X, then 1-Carleman holds for each X_j . The converse is not in general true, as mentioned above.

General Result (Petersen 1982):

Given is $X \sim F$ in \mathbb{R}^n with marginals $X_1 \sim F_1, \dots, X_n \sim F_n$.

- (a) If each of F_1, \ldots, F_n is M-det, then the *n*-dim. d.f. F is M-det.
- (b) If the d.f. F in \mathbb{R}^n is M-det, and the r.v.s X_1, \ldots, X_n are independent, then each of F_1, \ldots, F_n is M-det.

Comments:

- In (a) we do not specify in which way F_j are M-det.
- For (b), we use essentially that $F(x) = F_1(x_1) \cdots F_n(x_n)$.
- Compare claims (a) and (b) with the result involving the m.g.f. of X.
- Compare (a) and (b) with, e.g., normality property of X and of X_1, \ldots, X_n .

Warning: There are M-det *n*-dim. d.f.s with M-indet marginals.

This looks strange and counter-intuitive, but it is true. Quite analytic. We do not give details here. [Two illustrations: ODEs, real life case.]

Multivariate M-indet distribution:

Start with $X \sim F$ in \mathbb{R}^n with all multi-indexed moments finite.

Take one component, e.g., $X_1 \sim F_1$; the rest (X_2, \dots, X_n) is of dim. n-1.

Statement: Let the r.v. X_1 be independent of (X_2, \ldots, X_n) . Then, if X_1 is M-indet, the random vector $X = (X_1, X_2, \ldots, X_n)$ is M-indet. This is so for any dependence structure of (X_2, \ldots, X_n) in both cases, when (X_2, \ldots, X_n) is M-det and M-indet.

Hint: In general, since F_1 is M-indet, there are infinitely many other distributions, continuous and discrete, all with the same moments as F_1 . Eventually, we can construct Stieltjes class with center F_1 .

Use of Krein's Condition:

Given a r.v. $Y \sim G$ with positive density g. Depending on the support, \mathbb{R}^1 or \mathbb{R}_+ , define Krein quantity:

$$K[g] = \int_{-\infty}^{\infty} \frac{-\ln g(y)}{1+y^2} dy, \qquad K[g] = \int_{a}^{\infty} \frac{-\ln g(y^2)}{1+y^2} dy, \ a \ge 0.$$

Krein Theorem: $K[g] < \infty \Rightarrow G$ is M-indet.

Statement: For $X = (X_1, ..., X_n)$, if there is an index j such that $K[f_i] < \infty$ and X_i is independent of the rest, then X is M-indet.

We need more, in dim. 1. If G, 1-dim. d.f., has density g which is positive and smooth, define Lin's condition:

$$\frac{-y\,g'(y)}{g(y)} \nearrow +\infty, \ 0 \le y_0 \le y \to \infty.$$

Applications of the Petersen's Result:

Statement: The random vector $X \sim F$ in \mathbb{R}^n has marginals $X_1 \sim F_1, \ldots, X_n \sim F_n$ which are absolutely continuous and moreover, their densities f_1, \ldots, f_n are strictly positive and smooth. Assume that for $j=1,\ldots,n$, the converse to Krein's condition holds, i.e., $\mathsf{K}\big[f_j\big] = \infty$ and that Lin's condition holds, i.e. $-x_jf_j'(x_j)/f_j(x_j) \nearrow +\infty, \ x_j \to \infty$. Then for any dependence structure of X, its n-dim. d.f. F is M-det.

Hint: According to Lin's theorem (1997), each of X_1, \ldots, X_n is M-det, so the claim follows from the above Petersen's general result.

Remark: Lin's theorem can be extended to absolutely continuous distributions without requiring smoothness of the densities. Joint work with P. Kopanov (Plovdiv University, BG) is in good progress.

Use Hardy's Condition: SL, TPA (2012).

Random vector $X \sim F$, arbitrary d.f. F in \mathbb{R}^n , finite mixed moments $m_{k_1,\ldots,k_n} = \mathbf{E}[X_1^{k_1} \cdots X_n^{k_n}]$. Define: $||X|| = \sqrt{||X||^2} = \sqrt{X_1^2 + \ldots + X_n^2}$.

Statement: Let the 1-dim. r.v. $\|X\|$ satisfy Cramér's condition:

$$\mathbf{E}[e^{c||X||}]<\infty, \ c>0.$$

Then the *n*-dim. Hamburger moment problem for F has a unique solution: F is the only n-dim. d.f. with the set of moments $\{m_{k_1,\dots,k_n}\}$.

Proof: We follow two steps.

 $\begin{array}{ll} \textit{Step 1:} \;\; \text{Cram\'er's condition for} \;\; \|X\| \;\; \Rightarrow \;\; \text{Hardy's condition (Stieltjes case)} \\ \;\; \text{holds for} \;\; \|X\|^2 \colon \;\; \mathbf{E} \big[e^{\tilde{c} \sqrt{\|X\|^2}} \big] < \infty, \quad \tilde{c} > 0. \;\; \text{Hence} \;\; \|X\|^2 \;\; \text{is} \;\; \text{M-det.} \;\; . \end{array}$

Step 2: Amazing result by Putinar-Schmüdgen (2008):

If $X \sim F$ in \mathbb{R}^n is such that $||X||^2$ is M-det (1-dim. Stieltjes case), then F is M-det (n-dim. Hamburger case).

Rate of growth of the moments:

First, dim. 1: r.v. $Y \sim G$ with unbounded support and finite $m_k = \mathbf{E}[Y^k], k = 1, 2, \ldots$ Then, as $k \to \infty$, $m_k \nearrow \infty$ for Y > 0, while $m_{2k} \nearrow \infty$ for $Y \in \mathbb{R}$. Define

$$\Delta_k = \frac{m_{k+1}}{m_k}$$
 (Stieltjes case), $\Delta_k = \frac{m_{2k+2}}{m_{2k}}$ (Hamburger case).

 $\{\Delta_k\}$ is strictly \nearrow , unique $\lim_{k\to\infty}\Delta_k=\infty$. Suppose for some $\delta\ge 0$

$$\Delta_k \approx \tilde{c} k^{\delta}$$
 for large k .

 $0 \le \delta \le \infty$ is called the **rate of growth of the moments** of Y.

Statement 1: If $\delta \le 2$, then Y is M-det; $\delta = 2$ is the best possible rate for which Y is M-det.

Statement 2: If $\delta > 2$ and Lin's condition holds, then *Y* is M-indet.

Use the rate δ in dimension n

Given $X = (X_1, ..., X_n)$ with all multi-indexed moments finite. Consider the marginals $X_1 \sim F_1, ..., X_n \sim F_n$ and their rates $\delta_1, ..., \delta_n$.

Statement: Suppose that

$$\tilde{\delta} = \max\{\delta_1, \dots, \delta_n\} \le 2.$$

Then the random vector X is M-det.

Idea: The condition allows to apply Carleman's condition in dim. n.

Question: What to do if $\delta_j > 2$, or $\min\{\delta_1, \dots, \delta_n\} > 2$? It is not known. The reason is that there is no analog of Lin's condition in dim. $n \ge 2$. Attempts continue!

Brief Comments on Involving the Cumulants (Semi-Invariants):

Take (1-dim.) r.v. $\xi \sim G$, finite all moments $m_k = \mathbf{E}[\xi^k]$, $k = 1, 2, \ldots$ Use the ch.f. $\psi(t) = \mathbf{E}[\mathrm{e}^{it\xi}]$, real t and $\ln \psi(t)$. Find $\frac{d^k}{t^k} \ln \psi(t)$ at t = 0 to define numbers s_k , $k = 1, 2, \ldots$, called **cumulants** or **semi-invariants**.

Known: $\{m_k, k=1,2,\ldots\}$ and $\{s_k, k=1,2,\ldots\}$ are one-to-one.

Question: Can we characterize G uniquely by $\{s_k\}$? **Answer:** No!

Example: $\xi \sim Log \mathcal{N}(0,1), \ g(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{x} \exp\left[-\frac{1}{2}(\ln x)^2\right], x > 0;$

 $f(x) = 0, x \le 0$. For ξ : no m.g.f., finite moments, $m_k = e^{k^2/2}, k = 1, 2, ...$

Write the sets of r.v.s called **Stieltjes classes**

 $\xi_{\varepsilon},\ \varepsilon\in[-1,1]$: density $g_{\varepsilon}(x)=g(x)\left[1+\varepsilon\sin(2\pi\ln x)\right],\ x>0$; All r.v.s, ξ_{ε} are as ξ , have the same moments $\{e^{k^2/2}\}$, hence the same semi-invariants $\{s_k\}$. Notice, $Log\ \mathcal{N}$ is M-indet.

Conjecture: If *G* is M-det, then *G* is also S-det, and vise-versa.

Open Questions:

How to write Krein's condition in dim. $n \ge 2$?

How to write Lin's condition in dim. $n \ge 2$?

Topic: Characterization of probability distributions in terms of the semi-invariants.

References:

```
Books by Shohat & Tamarkin (1943), Akhiezer (1961 - 1965)
```

Hardy, GH (1917/1918): The Mathematical Messenger 46/47

Petersen, LC (1982): Math. Scand. 51 361-366

Lin, GD (1997): Statist. Probab. Letters **35** 85–90

De Jeu, M (2003): Ann. Probab. **31** 1205–1227

Stoyanov, J (2004): J. Appl. Probab. 41A 281–294.

Putinar, M, Schmüdgen, K (2008): Indiana Univ. Math. J. 57 2931–68

Gupta, AK et al. (2009): Random Oper. Stoch. Eqs 17 103-124

Kleiber, C, Stoyanov, J (2011/2013): J. Multivar. Analysis 113 7–18

Stoyanov, J, Lin, GD (2012): Theory Probab. Appl. **57**, no. 4, 811–820

Stoyanov, J (2013): Counterexamples in Probability. 3rd edn.

Dover Publications, New York. (1st ed, 2nd ed: Wiley 1987, 1997)

2nd Russian edition, Moscow, MCCME, 2012

