Hausdorff dimension of the boundary of Brownian bubbles

Robert C. Dalang

Ecole Polytechnique Fédérale de Lausanne

Based on joint work with:

T. Mountford (EPF - Lausanne)

The Brownian sheet

A standard two-parameter Brownian sheet is a centered Gaussian random field $W = (W(t_1, t_2), (t_1, t_2) \in \mathbb{R}^2_+)$ defined on a probability space (Ω, \mathcal{F}, P) , with continuous sample paths and covariance

$$E[W(s_1, s_2)W(t_1, t_2)] = \min(s_1, t_1) \min(s_2, t_2).$$

For fixed t_2 , $t_1 \mapsto W(t_1, t_2)$ is a Brownian motion (with speed t_2).

References:

1970's: L. Pitt, S. Orey & W. Pruitt, R. Pyke, R.J. Adler

1980's: W. Kendall, J.B. Walsh, D. Nualart

1990's: D. & J.B. Walsh, J. Kuelbs & W. Li, M. Talagrand, D. Khoshnevisan

& Z. Sh

2000's: G. Pete, D.-Khoshnevisan-Nualart-Wu-Xiao, D. & Mueller

Two books: R. Adler (1990), D. Khoshnevisan (2002)

Issues: Sample path properties, Markov properties, potential theory, level sets, small ball probabilities, hitting probabilities, multiple points.

The Brownian sheet

A standard two-parameter Brownian sheet is a centered Gaussian random field $W = (W(t_1, t_2), (t_1, t_2) \in \mathbb{R}^2_+)$ defined on a probability space (Ω, \mathcal{F}, P) , with continuous sample paths and covariance

$$E[W(s_1, s_2)W(t_1, t_2)] = \min(s_1, t_1) \min(s_2, t_2).$$

For fixed t_2 , $t_1 \mapsto W(t_1, t_2)$ is a Brownian motion (with speed t_2).

References:

1970's: L. Pitt, S. Orey & W. Pruitt, R. Pyke, R.J. Adler

1980's: W. Kendall, J.B. Walsh, D. Nualart

1990's: D. & J.B. Walsh, J. Kuelbs & W. Li, M. Talagrand, D. Khoshnevisan

& Z. Shi

2000's: G. Pete, D.-Khoshnevisan-Nualart-Wu-Xiao, D. & Mueller

Two books: R. Adler (1990), D. Khoshnevisan (2002)

Issues: Sample path properties, Markov properties, potential theory, level sets, small ball probabilities, hitting probabilities, multiple points.

The Brownian sheet

A standard two-parameter Brownian sheet is a centered Gaussian random field $W = (W(t_1, t_2), (t_1, t_2) \in \mathbb{R}^2_+)$ defined on a probability space (Ω, \mathcal{F}, P) , with continuous sample paths and covariance

$$E[W(s_1, s_2)W(t_1, t_2)] = \min(s_1, t_1) \min(s_2, t_2).$$

For fixed t_2 , $t_1 \mapsto W(t_1, t_2)$ is a Brownian motion (with speed t_2).

References:

1970's: L. Pitt, S. Orey & W. Pruitt, R. Pyke, R.J. Adler

1980's: W. Kendall, J.B. Walsh, D. Nualart

1990's: D. & J.B. Walsh, J. Kuelbs & W. Li, M. Talagrand, D. Khoshnevisan

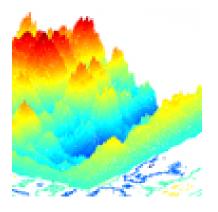
& Z. Shi

2000's: G. Pete, D.-Khoshnevisan-Nualart-Wu-Xiao, D. & Mueller

Two books: R. Adler (1990), D. Khoshnevisan (2002)

Issues: Sample path properties, Markov properties, potential theory, level sets, small ball probabilities, hitting probabilities, multiple points.

A sample path of the Brownian sheet N=2, d=1



Level sets and bubbles

For $x \in \mathbb{R}$, the level set of W at level x is the random closed set

$$L(x) := \{(t_1, t_2) \in \mathbb{R}^2_+ : W(t_1, t_2) = x\}.$$

The complement of the level set is the union of two random open sets

$$L_+(x) := \{(t_1, t_2) \in \mathbb{R}^2_+ : W(t_1, t_2) > x\},\$$

$$L_{-}(x) := \{(t_1, t_2) \in \mathbb{R}^2_+ : W(t_1, t_2) < x\}.$$

Definition. A Brownian bubble is one connected component of $L_+(x)$ or $L_-(x)$.

Ρ1

(Recall that any open subset of \mathbb{R}^2_+ is a countable disjoint union of connected components.)

Level sets and bubbles

For $x \in \mathbb{R}$, the level set of W at level x is the random closed set

$$L(x) := \{(t_1, t_2) \in \mathbb{R}^2_+ : W(t_1, t_2) = x\}.$$

The complement of the level set is the union of two random open sets

$$L_+(x) := \{(t_1, t_2) \in \mathbb{R}^2_+ : W(t_1, t_2) > x\},\$$

$$L_{-}(x) := \{(t_1, t_2) \in \mathbb{R}^2_+ : W(t_1, t_2) < x\}.$$

Definition. A Brownian bubble is one connected component of $L_+(x)$ or $L_-(x)$.

Ρ1

(Recall that any open subset of \mathbb{R}^2_+ is a countable disjoint union of connected components.)

For $\beta \geqslant 0$, the β -dimensional Hausdorff measure of A is defined by

$$\mathcal{H}_{\beta}(A) = \lim_{\epsilon \to 0^+} \inf \left\{ \sum_{i=1}^{\infty} (2r_i)^{\beta} : A \subseteq \bigcup_{i=1}^{\infty} B(x_i, r_i), \sup_{i \ge 1} r_i \leqslant \epsilon \right\}.$$

When $\beta < 0$, we define $\mathcal{H}_{\beta}(A)$ to be infinite.

Fact. Given a set A, there is a number β_0 such that

$$eta < eta_0 \Rightarrow \mathcal{H}_{eta}(A) = +\infty$$
 and $eta > eta_0 \Rightarrow \mathcal{H}_{eta}(A) = 0$.

Definition. The number β_0 is the *Hausdorff dimension* of A. The three cases $\mathcal{H}_{\beta_0}(A) = +\infty$, $\mathcal{H}_{\beta_0}(A) = 0$ and $0 < \mathcal{H}_{\beta_0}(A) < +\infty$ are possible.

Basic examples. (1) The Hausdorff dimension of the zero set of standard Brownian motion is $\frac{1}{2}$.

- (2) The Hausdorff dimension of the graph of standard BM is $\frac{3}{2}$
- (3) The Hausdorff dimension of the range of d-dimensional BM is min(2, d)

For $\beta \geqslant 0$, the β -dimensional Hausdorff measure of A is defined by

$$\mathcal{H}_{\beta}(A) = \lim_{\epsilon \to 0^+} \inf \left\{ \sum_{i=1}^{\infty} (2r_i)^{\beta} : A \subseteq \bigcup_{i=1}^{\infty} B(x_i, r_i), \sup_{i \ge 1} r_i \leqslant \epsilon \right\}.$$

When $\beta < 0$, we define $\mathcal{H}_{\beta}(A)$ to be infinite.

Fact. Given a set A, there is a number β_0 such that

$$\beta < \beta_0 \Rightarrow \mathcal{H}_{\beta}(A) = +\infty$$
 and $\beta > \beta_0 \Rightarrow \mathcal{H}_{\beta}(A) = 0$.

Definition. The number β_0 is the *Hausdorff dimension* of A. The three cases $\mathcal{H}_{\beta_0}(A) = +\infty$, $\mathcal{H}_{\beta_0}(A) = 0$ and $0 < \mathcal{H}_{\beta_0}(A) < +\infty$ are possible.

Basic examples. (1) The Hausdorff dimension of the zero set of standard Brownian motion is $\frac{1}{6}$.

- (2) The Hausdorff dimension of the graph of standard BM is $\frac{3}{5}$
- (3) The Hausdorff dimension of the range of d-dimensional BM is min(2, d)

For $\beta \geqslant 0$, the β -dimensional Hausdorff measure of A is defined by

$$\mathcal{H}_{\beta}(A) = \lim_{\epsilon \to 0^+} \inf \left\{ \sum_{i=1}^{\infty} (2r_i)^{\beta} : A \subseteq \bigcup_{i=1}^{\infty} B(x_i, r_i), \sup_{i \ge 1} r_i \leqslant \epsilon \right\}.$$

When $\beta < 0$, we define $\mathcal{H}_{\beta}(A)$ to be infinite.

Fact. Given a set A, there is a number β_0 such that

$$\beta < \beta_0 \Rightarrow \mathcal{H}_{\beta}(A) = +\infty$$
 and $\beta > \beta_0 \Rightarrow \mathcal{H}_{\beta}(A) = 0$.

Definition. The number β_0 is the *Hausdorff dimension* of *A*. The three cases $\mathcal{H}_{\beta_0}(A) = +\infty$, $\mathcal{H}_{\beta_0}(A) = 0$ and $0 < \mathcal{H}_{\beta_0}(A) < +\infty$ are possible.

Basic examples. (1) The Hausdorff dimension of the zero set of standard Brownian motion is $\frac{1}{2}$.

- (2) The Hausdorff dimension of the graph of standard BM is $\frac{3}{2}$.
- (3) The Hausdorff dimension of the range of d-dimensional BM is min(2, d)

For $\beta \geqslant 0$, the β -dimensional Hausdorff measure of A is defined by

$$\mathcal{H}_{\beta}(A) = \lim_{\epsilon \to 0^+} \inf \left\{ \sum_{i=1}^{\infty} (2r_i)^{\beta} : A \subseteq \bigcup_{i=1}^{\infty} B(x_i, r_i), \sup_{i \ge 1} r_i \leqslant \epsilon \right\}.$$

When $\beta < 0$, we define $\mathcal{H}_{\beta}(A)$ to be infinite.

Fact. Given a set A, there is a number β_0 such that

$$\beta < \beta_0 \Rightarrow \mathcal{H}_{\beta}(A) = +\infty$$
 and $\beta > \beta_0 \Rightarrow \mathcal{H}_{\beta}(A) = 0$.

Definition. The number β_0 is the *Hausdorff dimension* of *A*. The three cases $\mathcal{H}_{\beta_0}(A) = +\infty$, $\mathcal{H}_{\beta_0}(A) = 0$ and $0 < \mathcal{H}_{\beta_0}(A) < +\infty$ are possible.

Basic examples. (1) The Hausdorff dimension of the zero set of standard Brownian motion is $\frac{1}{3}$.

- (2) The Hausdorff dimension of the graph of standard BM is $\frac{3}{2}$.
- (3) The Hausdorff dimension of the range of d-dimensional \overrightarrow{BM} is $\min(2, d)$.

Back to the Brownian sheet:

Theorem 1 (R.J. Adler, 1978)

A.s., for all $x \in \mathbb{R}$, $dim_{\mathcal{H}} L(x) = 1.5$

Theorem 2 (T. Mountford, 1993)

Fix $x \in \mathbb{R}$. A.s., the Hausdorff dimension of the boundary of any Browniar bubble is: $\geqslant 1.25$ and < 1.5.

Interpretation: "Most of L(x) is not part of the boundary of any bubble."

Comparison with standard Brownian motion

bubbles \longleftrightarrow excursions above/below level x; boundaries of bubbles \longleftrightarrow extremities of excursion intervals.

There are countably many extremities of excursion intervals (dimension 0), but the dimension of level sets of standard Brownian motion is $\frac{1}{2}$.

Back to the Brownian sheet:

Theorem 1 (R.J. Adler, 1978)

A.s., for all $x \in \mathbb{R}$, $dim_{\mathcal{H}} L(x) = 1.5$

Theorem 2 (T. Mountford, 1993)

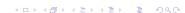
Fix $x \in \mathbb{R}$. A.s., the Hausdorff dimension of the boundary of any Brownian bubble is: $\geqslant 1.25$ and < 1.5.

Interpretation: "Most of L(x) is not part of the boundary of any bubble."

Comparison with standard Brownian motion

```
bubbles \longleftrightarrow excursions above/below level x; boundaries of bubbles \longleftrightarrow extremities of excursion intervals.
```

There are countably many extremities of excursion intervals (dimension 0), but the dimension of level sets of standard Brownian motion is $\frac{1}{2}$.



Back to the Brownian sheet:

Theorem 1 (R.J. Adler, 1978)

A.s., for all $x \in \mathbb{R}$, $dim_{\mathcal{H}}L(x) = 1.5$

Theorem 2 (T. Mountford, 1993)

Fix $x \in \mathbb{R}$. A.s., the Hausdorff dimension of the boundary of any Brownian bubble is: $\geqslant 1.25$ and < 1.5.

Interpretation: "Most of L(x) is not part of the boundary of any bubble."

Comparison with standard Brownian motion:

bubbles \longleftrightarrow excursions above/below level x; boundaries of bubbles \longleftrightarrow extremities of excursion intervals.

There are countably many extremities of excursion intervals (dimension 0), but the dimension of level sets of standard Brownian motion is $\frac{1}{2}$.

Back to the Brownian sheet:

Theorem 1 (R.J. Adler, 1978)

A.s., for all $x \in \mathbb{R}$, $dim_{\mathcal{H}}L(x) = 1.5$

Theorem 2 (T. Mountford, 1993)

Fix $x \in \mathbb{R}$. A.s., the Hausdorff dimension of the boundary of any Brownian bubble is: $\geqslant 1.25$ and < 1.5.

Interpretation: "Most of L(x) is not part of the boundary of any bubble."

Comparison with standard Brownian motion:

```
bubbles \longleftrightarrow excursions above/below level x; boundaries of bubbles \longleftrightarrow extremities of excursion intervals.
```

There are countably many extremities of excursion intervals (dimension 0), but the dimension of level sets of standard Brownian motion is $\frac{1}{2}$.

Explanation for Adler's theorem

Upper bounds on Hausdorff dimension ← coverings.

Let

$$V_n := \{(1+i2^{-2n}, 1+j2^{-2n}) : i,j \in \{0,\ldots,2^{2n}-1\}.$$

Then $V_n = \text{vertices of a grid in } [1,2]^2$, $\sharp V_n = 2^{4n}$.

For $t \in \mathbb{E}_n$, define $E_n(t) :=$ the square in the grid with lower left corner at t. P2 One covering of $L(x) \cap [1,2]^2$, with diameter $c2^{-2n}$, is:

$$\{E_n(t): t \in V_n, E_n(t) \cap L(x) \neq \emptyset\}.$$

Calculation

$$E\left[\sum_{t\in V_n} (2^{-2n})^{\alpha} 1_{\{E_n(t)\cap L(x)\neq\emptyset\}}\right] = (2^{-2n})^{\alpha} (2^{2n})^2 P\{E_n(t)\cap L(x)\neq\emptyset\}.$$

Nov

$$P\{E_n(t) \cap L(x) \neq \emptyset\} \simeq P\{|W(t) - x| \leq 2^{-n}\} \simeq 2^{-n},$$

so the expectation above is

$$\leq 2^{(4-2\alpha)n}2^{-n} = 2^{(3-2\alpha)n} \to 0$$

as $n \to \infty$ if and only if $\alpha > \frac{3}{2}$.

Explanation for Adler's theorem

Upper bounds on Hausdorff dimension ← coverings.

Let

$$V_n := \{(1+i2^{-2n}, 1+j2^{-2n}) : i,j \in \{0,\ldots,2^{2n}-1\}.$$

Then $V_n = \text{vertices of a grid in } [1,2]^2$, $\sharp V_n = 2^{4n}$.

For $t \in \mathbb{E}_n$, define $E_n(t) :=$ the square in the grid with lower left corner at t. P2 One covering of $L(x) \cap [1,2]^2$, with diameter $c2^{-2n}$, is:

$$\{E_n(t): t \in V_n, E_n(t) \cap L(x) \neq \emptyset\}.$$

Calculation:

$$E\left[\sum_{t\in V_n} (2^{-2n})^{\alpha} \, \mathbf{1}_{\{E_n(t)\cap L(x)\neq\emptyset\}}\right] = (2^{-2n})^{\alpha} \, (2^{2n})^2 \, P\{E_n(t)\cap L(x)\neq\emptyset\}.$$

Now

$$P\{E_n(t) \cap L(x) \neq \emptyset\} \simeq P\{|W(t) - x| \leq 2^{-n}\} \simeq 2^{-n}$$

so the expectation above is

$$\leqslant 2^{(4-2\alpha)n}2^{-n} = 2^{(3-2\alpha)n} \to 0$$

as $n \to \infty$ if and only if $\alpha > \frac{3}{2}$.

Towards the dimension of bubble boundaries

Let C_1 be a bubble of height $\geqslant 1$ (in $[1,2]^2$). Then:

$$t \in \partial \mathcal{C}_1 \iff W(t) = x$$
 and for all $\varepsilon > 0$, there exists a path Γ with $d(\Gamma(0), t) > \varepsilon$ and $W(\Gamma(\cdot)) - x$ hits 1 before 0 .

P3

Covering of $\partial C_1 \cap [1,2]^2$:

$$\{E_n(t): E_n(t) \cap L(x) \neq \emptyset \text{ and } F(t) \text{ occurs}\},$$

where

$$F(t) = \{\exists \Gamma : \Gamma(0) = t \text{ and } W(\Gamma(\cdot)) - x \text{ hits } 1 \text{ before } 0\}$$

Should examine the behavior as $n \to \infty$ of

$$\sum_{t \in V_n} (2^{-2n})^{\alpha} P\{|W(t) - x| \le 2^{-n}\} P\{F(t) | |W(t) - x| \le 2^{-n}\}$$

 $A_{\text{circ}} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)$

Main difficulty in estimating $P\{F(t) | |W(t) - x| \le 2^{-n}\}$: there are infinitely many possible paths, and these can be arbitrarily "twisty" [D. & Walsh, 1993]

Towards the dimension of bubble boundaries

Let C_1 be a bubble of height $\geqslant 1$ (in $[1,2]^2$). Then:

$$t \in \partial \mathcal{C}_1 \Longleftrightarrow W(t) = x$$
 and for all $\varepsilon > 0$, there exists a path Γ with $d(\Gamma(0),t) > \varepsilon$ and $W(\Gamma(\cdot)) - x$ hits 1 before 0 .

P3

Covering of $\partial \mathcal{C}_1 \cap [1,2]^2$:

$$\{E_n(t): E_n(t) \cap L(x) \neq \emptyset \text{ and } F(t) \text{ occurs}\},\$$

where

$$F(t) = \{\exists \Gamma : \Gamma(0) = t \text{ and } W(\Gamma(\cdot)) - x \text{ hits } 1 \text{ before } 0\}.$$

Should examine the behavior as $n \to \infty$ of

$$\sum_{t \in V_n} (2^{-2n})^{\alpha} P\{|W(t) - x| \le 2^{-n}\} P\{F(t) | |W(t) - x| \le 2^{-n}\}$$

Main difficulty in estimating $P\{F(t) \mid |W(t) - x| \le 2^{-n}\}$: there are infinitely many possible paths, and these can be arbitrarily "twisty" [D. & Walsh, 1993]

Towards the dimension of bubble boundaries

Let C_1 be a bubble of height $\geqslant 1$ (in $[1,2]^2$). Then:

$$t \in \partial \mathcal{C}_1 \Longleftrightarrow W(t) = x$$
 and for all $\varepsilon > 0$, there exists a path Γ with $d(\Gamma(0), t) > \varepsilon$ and $W(\Gamma(\cdot)) - x$ hits 1 before 0 .

P3

Covering of $\partial \mathcal{C}_1 \cap [1,2]^2$:

$$\{E_n(t): E_n(t) \cap L(x) \neq \emptyset \text{ and } F(t) \text{ occurs}\},\$$

where

$$F(t) = \{\exists \Gamma : \Gamma(0) = t \text{ and } W(\Gamma(\cdot)) - x \text{ hits } 1 \text{ before } 0\}.$$

Should examine the behavior as $n \to \infty$ of

$$\sum_{t \in V_n} (2^{-2n})^{\alpha} P\{|W(t) - x| \leq 2^{-n}\} P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}$$
$$\simeq 2^{4n} 2^{-2\alpha n} 2^{-n} P\{F(t) \mid |W(t) - x| \leq 2^{-n}\}.$$

Main difficulty in estimating $P\{F(t) \mid |W(t) - x| \le 2^{-n}\}$: there are infinitely many possible paths, and these can be arbitrarily "twisty" [D. & Walsh, 1993].

Local decomposition of the Brownian sheet

The event F(t) is "local": either 0 is hit rather quickly, or not, and in this case, W-x will typically escape to a height of order 1 (the same occurs for Brownian motion).

Local decomposition of W [W. Kendall, 1980]: Fix $t = (t_1, t_2)$. For $u_1, u_2 \in \mathbb{R}$,

$$W(t_1 + u_1, t_2 + u_2) = W(t_1, t_2) + B_1^t(u_1) + B_2^t(u_2) + \mathcal{E}^t(u_1, u_2),$$

where:

 B_1^t , B_2^t are independent (two-sided) BM's, and \mathcal{E}^t is "small" (of order $\sqrt{|u_1u_2|}$).

This suggest to study additive Brownian motion

$$X(u_1, u_2) := X(0, 0) + B_1(u_1) + B_2(u_2), \qquad u_1, u_2 \in \mathbb{R}$$

where B_1 and B_2 are independent (two-sided) BM's

Local decomposition of the Brownian sheet

The event F(t) is "local": either 0 is hit rather quickly, or not, and in this case, W-x will typically escape to a height of order 1 (the same occurs for Brownian motion).

Local decomposition of W [W. Kendall, 1980]: Fix $t = (t_1, t_2)$. For $u_1, u_2 \in \mathbb{R}$,

$$W(t_1 + u_1, t_2 + u_2) = W(t_1, t_2) + B_1^t(u_1) + B_2^t(u_2) + \mathcal{E}^t(u_1, u_2),$$

where:

 B_1^t , B_2^t are independent (two-sided) BM's, and \mathcal{E}^t is "small" (of order $\sqrt{|u_1u_2|}$).

This suggest to study additive Brownian motion:

$$X(u_1, u_2) := X(0,0) + B_1(u_1) + B_2(u_2), \qquad u_1, u_2 \in \mathbb{R},$$

where B_1 and B_2 are independent (two-sided) BM's.

Gambler's ruin problem for additive BM

Let $X = (X(u_1, u_2), (u_1, u_2) \in \mathbb{R}^2)$ be an additive Brownian motion.

For $x \in [0, 1]$, define

$$\mathbb{E}(x) := P\{\exists \text{ path } \Gamma : \Gamma(0) = (0,0), \ X(\Gamma(\cdot)) \text{ hits } 1 \text{ before } 0 \mid X(0,0) = x\}.$$

Problem. Estimate $\mathbb{E}(x)$.

P4

Main difficulty: there is no constraint on the path Γ : one has to consider all paths, with no restrictions.

Related problem. For $X(0,0) \neq 0$, let $\mathcal{C}_{(0,0)}$ be the bubble "stradling" (0,0)

Question. For a > 0, what is the probability that the bubble $C_{(0,0)}$ extends at least a units away from the origin?

PF

That is estimate

$$\mathbb{D}(x,a) = P\{C_{(0,0)} \not\subset [-a,a]^2 \mid X(0,0) = x\}$$

By scaling, $\mathbb{D}(x,a) = \mathbb{D}(x/\sqrt{a},1)$, and we expect $\mathbb{D}(x,1) \simeq \mathbb{E}(x)$ for $x \downarrow 0$

4 D > 4 B > 4 B > 4 B > 9 Q C

Gambler's ruin problem for additive BM

Let $X = (X(u_1, u_2), (u_1, u_2) \in \mathbb{R}^2)$ be an additive Brownian motion.

For $x \in [0, 1]$, define

$$\mathbb{E}(x) := P\{\exists \text{ path } \Gamma : \Gamma(0) = (0,0), \ X(\Gamma(\cdot)) \text{ hits 1 before 0} \mid X(0,0) = x\}.$$

Problem. Estimate $\mathbb{E}(x)$.

P4

Main difficulty: there is no constraint on the path Γ : one has to consider all paths, with no restrictions.

Related problem. For $X(0,0) \neq 0$, let $\mathcal{C}_{(0,0)}$ be the bubble "stradling" (0,0).

Question. For a>0, what is the probability that the bubble $\mathcal{C}_{(0,0)}$ extends at least a units away from the origin?

P5

That is, estimate

$$\mathbb{D}(x,a) = P\{C_{(0,0)} \not\subset [-a,a]^2 \mid X(0,0) = x\}.$$

By scaling, $\mathbb{D}(x,a) = \mathbb{D}(x/\sqrt{a},1)$, and we expect $\mathbb{D}(x,1) \simeq \mathbb{E}(x)$ for $x \downarrow 0$.

◆□▶◆御▶◆意▶◆意▶ 意 めのぐ

Gambler's ruin problem for additive BM

Let $X = (X(u_1, u_2), (u_1, u_2) \in \mathbb{R}^2)$ be an additive Brownian motion.

For $x \in [0, 1]$, define

$$\mathbb{E}(x) := P\{\exists \text{ path } \Gamma : \Gamma(0) = (0,0), \ X(\Gamma(\cdot)) \text{ hits 1 before 0} \mid X(0,0) = x\}.$$

Problem. Estimate $\mathbb{E}(x)$.

P4

Main difficulty: there is no constraint on the path Γ : one has to consider all paths, with no restrictions.

Related problem. For $X(0,0) \neq 0$, let $\mathcal{C}_{(0,0)}$ be the bubble "stradling" (0,0).

Question. For a>0, what is the probability that the bubble $\mathcal{C}_{(0,0)}$ extends at least a units away from the origin?

P5

That is, estimate

$$\mathbb{D}(x,a) = P\{C_{(0,0)} \not\subset [-a,a]^2 \mid X(0,0) = x\}.$$

By scaling, $\mathbb{D}(x,a) = \mathbb{D}(x/\sqrt{a},1)$, and we expect $\mathbb{D}(x,1) \simeq \mathbb{E}(x)$ for $x \downarrow 0$.

◆ロト ◆部ト ◆草ト ◆草 ・ りゅぐ

Gambler's ruin

Theorem 3 (D. & Mountford)

For $x \in [0, 1]$,

$$\mathbb{E}(x) = \alpha_1 x^{\lambda_1} + \alpha_2 x^{\lambda_2} + \alpha_3 x^{\lambda_3} + \alpha_4 x^{\lambda_4},$$

where

$$\{\lambda_1,\lambda_2,\lambda_3,\lambda_4\} = \left\{\frac{1}{2}\left(5\pm\sqrt{13\pm4\sqrt{5}}\right)\right\},$$

$$\lambda_1 = \frac{1}{2} \left(5 - \sqrt{13 + 4\sqrt{5}} \right) \simeq 0.158 < \lambda_2 \simeq 1.49 < \cdots$$

 $\alpha_1 \simeq 0.939$, $\alpha_2 = \cdots$ (exact, explicit formulas are given). In particular, $\mathbb{E}(x) \simeq x^{\lambda_1}$ as $x \downarrow 0$.

Comparison. For standard BM, we would have $\mathbb{E}(x) \simeq x \ll x^{\lambda_1}$.

Theorem 3 is somewhat surprising!

Escape probabilities

Corollary 1

There exist $0 < c < C < \infty$ such that, for all $a \ge x^2$,

$$c\left(\frac{x}{\sqrt{a}}\right)^{\lambda_1} \leqslant \mathbb{D}(x,a) \leqslant C\left(\frac{x}{\sqrt{a}}\right)^{\lambda_1}.$$

Proving Corollary 1 from Theorem 3 requires some effort.

Main result

Theorem 4 (D. & Mountford)

Fix $x \in \mathbb{R}$. For the Brownian sheet, the Hausdorff dimension of the boundary of every x-bubble is

$$\frac{3}{2} - \frac{\lambda_1}{2} = \frac{1}{4} \left(1 + \sqrt{13 + 4\sqrt{5}} \right) \simeq 1.421.$$

Main result

Theorem 4 (D. & Mountford)

Fix $x \in \mathbb{R}$. For the Brownian sheet, the Hausdorff dimension of the boundary of every x-bubble is

$$\frac{3}{2} - \frac{\lambda_1}{2} = \frac{1}{4} \left(1 + \sqrt{13 + 4\sqrt{5}} \right) \simeq 1.421.$$

Once Theorem 3 and Corollary 1 are proved, the road map to prove Theorem 4 is fairly clear. Carrying out these steps requires some effort.

Will explain why Theorem 3 is true, then give some ideas on how to deduce Theorem 4.

Proving Theorem 3 (gambler's ruin probabilities for ABM)

Theorem 5 (D. & Walsh, 1993)

There is a specific path Γ° such that

$$\mathbb{E}(x) = P\{X(\Gamma^{\circ}(\cdot)) \text{ hits } 1 \text{ before } 0 \mid X(0,0) = x\}.$$

P6 Explain construction of Γ^0 : the DW-algorithm.

Lemma

The sequence $M_0 = x, M_1, M_2, \ldots$ of successive maxima encountered along the horizontal/vertical segments of the path Γ° is Markov of order 2, with transition probabilities

$$P\{M_{n+1} \in dz \mid M_n = y, M_{n-1} = x\} = f(x, y, z) dz, \qquad z > y > x,$$

where

$$f(x,y,z) = \frac{2(y-x)}{z^2} - \frac{2(y-x)^2}{z^3}$$

and

$$P\{M_{n+1} = y \mid M_n = y, M_{n-1} = x\} = \left(\frac{x}{y}\right)^2$$

Proving Theorem 3 (gambler's ruin probabilities for ABM)

Theorem 5 (D. & Walsh, 1993)

There is a specific path Γ° such that

$$\mathbb{E}(x) = P\{X(\Gamma^{\circ}(\cdot)) \text{ hits } 1 \text{ before } 0 \mid X(0,0) = x\}.$$

P6 Explain construction of Γ^0 : the DW-algorithm.

Lemma

The sequence $M_0=x,M_1,M_2,\ldots$ of successive maxima encountered along the horizontal/vertical segments of the path Γ^o is Markov of order 2, with transition probabilities

$$P\{M_{n+1} \in dz \mid M_n = y, M_{n-1} = x\} = f(x, y, z) dz, \quad z > y > x,$$

where

$$f(x,y,z) = \frac{2(y-x)}{z^2} - \frac{2(y-x)^2}{z^3},$$

and

$$P\{M_{n+1} = y \mid M_n = y, M_{n-1} = x\} = \left(\frac{x}{y}\right)^2.$$

Study of the Markov chain $\Theta_n = (M_{n-1}, M_n)$

State space: $S = \{(y_1, y_2) \in \mathbb{R}^2_+ : 0 < y_1 \leqslant y_2\}$

P7 Consider the paths of (Θ_n)

Define the subsets:

WIN :=
$$\{(y_1, y_2) \in S : y_2 \geqslant 1\}$$
,

LOSE :=
$$\{(y_1, y_2) \in S : y_2 = y_1\}.$$

P8 and set

$$\alpha(x,y) = P\{(\Theta_n) \text{ visits LOSE before WIN } | \Theta_1 = (x,y) \}.$$

Then

$$\alpha(x,y) = \left(\frac{x}{y}\right)^2 + \int_y^1 dz \, f(x,y,z) \, \alpha(y,z). \tag{1}$$

This is an unusual sort of linear integral equation (but similar to the system of equations for absorption probabilities for Markov chains). After several manipulations, one checks that:

Study of the Markov chain $\Theta_n = (M_{n-1}, M_n)$

State space: $S = \{(y_1, y_2) \in \mathbb{R}^2_+ : 0 < y_1 \leqslant y_2\}$

P7 Consider the paths of (Θ_n)

Define the subsets:

WIN :=
$$\{(y_1, y_2) \in \mathcal{S} : y_2 \ge 1\}$$
,
LOSE := $\{(y_1, y_2) \in \mathcal{S} : y_2 = y_1\}$.

P8 and set

$$\alpha(x,y) = P\{(\Theta_n) \text{ visits LOSE before WIN } | \Theta_1 = (x,y) \}.$$

Then

$$\alpha(x,y) = \left(\frac{x}{y}\right)^2 + \int_{y}^{1} dz \, f(x,y,z) \, \alpha(y,z). \tag{1}$$

This is an unusual sort of linear integral equation (but similar to the system of equations for absorption probabilities for Markov chains). After several manipulations, one checks that:

Solving the integral equation

Solving (1) is equivalent to soving the linear system of o.d.e.'s

$$\underline{\dot{x}}(y) = A \cdot \underline{x}(y) + \underline{b}, \qquad y > 0,$$

where A is the 6 \times 6 matrix and \underline{b} and $\underline{x}(0)$ are the column vectors

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -9 & 6 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -8 & 2 & 0 & 28 & -26 & 9 \end{pmatrix}, \quad \underline{b} = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -6 \end{pmatrix}, \quad \underline{x}(0) = \begin{pmatrix} 0 \\ -1 \\ -3 \\ 0 \\ 1 \\ -4 \end{pmatrix}.$$

This yields an explicit formula for $\alpha(x, y)$, via the 4 real eigenvalues $\lambda_1, \ldots, \lambda_4$ and eigenvectors of A. Finally,

$$\mathbb{E}(\mathsf{x}) = 1 - E[\alpha(\mathsf{x}, H_1)],$$

where $P\{H_1 \leqslant y\} = (P_x\{B(\cdot) \text{ hits 0 before } y\})^2 = \left(\frac{y-x}{y}\right)^2$.

This leads to the explicit formula for $\mathbb{E}(x)$

Solving the integral equation

Solving (1) is equivalent to soving the linear system of o.d.e.'s

$$\underline{\dot{x}}(y) = A \cdot \underline{x}(y) + \underline{b}, \qquad y > 0,$$

where A is the 6 \times 6 matrix and \underline{b} and $\underline{x}(0)$ are the column vectors

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -9 & 6 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -8 & 2 & 0 & 28 & -26 & 9 \end{pmatrix}, \quad \underline{b} = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -6 \end{pmatrix}, \quad \underline{x}(0) = \begin{pmatrix} 0 \\ -1 \\ -3 \\ 0 \\ 1 \\ -4 \end{pmatrix}.$$

This yields an explicit formula for $\alpha(x, y)$, via the 4 real eigenvalues $\lambda_1, \ldots, \lambda_4$ and eigenvectors of A. Finally,

$$\mathbb{E}(x) = 1 - E[\alpha(x, H_1)],$$

where $P\{H_1 \leqslant y\} = (P_x\{B(\cdot) \text{ hits 0 before } y\})^2 = \left(\frac{y-x}{y}\right)^2$.

This leads to the explicit formula for $\mathbb{E}(x)$

Solving the integral equation

Solving (1) is equivalent to soving the linear system of o.d.e.'s

$$\underline{\dot{x}}(y) = A \cdot \underline{x}(y) + \underline{b}, \qquad y > 0,$$

where A is the 6 \times 6 matrix and \underline{b} and $\underline{x}(0)$ are the column vectors

$$A = \left(\begin{array}{cccccc} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -9 & 6 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -8 & 2 & 0 & 28 & -26 & 9 \end{array} \right), \quad \underline{b} = \left(\begin{array}{c} 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -6 \end{array} \right), \quad \underline{x}(0) = \left(\begin{array}{c} 0 \\ -1 \\ -3 \\ 0 \\ 1 \\ -4 \end{array} \right).$$

This yields an explicit formula for $\alpha(x,y)$, via the 4 real eigenvalues $\lambda_1,\ldots,\lambda_4$ and eigenvectors of A. Finally,

$$\mathbb{E}(x) = 1 - E[\alpha(x, H_1)],$$

where $P\{H_1 \leqslant y\} = (P_x\{B(\cdot) \text{ hits 0 before } y\})^2 = \left(\frac{y-x}{y}\right)^2$.

This leads to the explicit formula for $\mathbb{E}(x)$.

Proving Theorem 4

Theorem. dim_H "bubble" = $\frac{3}{2} - \frac{\lambda_1}{2}$.

Part 1. Upper bound: \dim_H "bubble" $\leqslant \frac{3}{2} - \frac{\lambda_1}{2}$.

Use the covering argument discussed previously:

$$\sum_{t \in V_n} (2^{-2n})^{\alpha} P\{|W(t) - x| \leq 2^{-n}\} P\{F(t) | |W(t) - x| \leq 2^{-n}\}
\simeq 2^{4n} 2^{-2\alpha n} 2^{-n} P\{F(t) | |W(t) - x| \leq 2^{-n}\}
\simeq 2^{(3-2\alpha)n} (2^{-n})^{\lambda_1}
= 2^{(3-2\alpha-\lambda_1)n}
\longrightarrow 0 \quad \text{if } \alpha > \frac{3-\lambda_1}{2}.$$
(2)

Note. (2) concerns the Brownian sheet, not ABM: some effort is needed to go from one to the other ("robustness" of the DW-algorithm).

Proving Theorem 4

Part 2. Lower bound: \dim_H "bubble" $\geqslant \frac{3}{2} - \frac{\lambda_1}{2}$.

Energy method: For $\alpha<\frac{3}{2}-\frac{\lambda_1}{2}$, seek a measure μ supported on the boundary of a bubble, such that

$$\int \int \frac{\mu(ds)\mu(dt)}{|t-s|^{\alpha}} < \infty.$$

Via a "second moment argument", the key estimate is:

Part 2 (continued)

Lemma

For
$$s,t\in [1,2]^2$$
, with $|s_1-t_1|\simeq 2^{2(k-n)}$, $|s_2-t_2|\simeq 2^{2(\ell-n)}$ $(1\leqslant k<\ell\leqslant n)$, $P\{|W(t)|\leqslant 2^{-n},\, F(t),\, |W(s)|\leqslant 2^{-n},\, F(s)\}\leqslant 2^{-n}\, 2^{-\ell}(2^{-k\lambda_1})^2(2^{\ell-n})^{\lambda_1}.$

(recall that
$$F(t) = \{\exists \Gamma : \Gamma(0) = t \text{ and } W(\Gamma(\cdot)) \text{ hits } 1 \text{ before } 0\}$$
; here $x = 0$.)

Explanation of each factor

P9
$$W(t) \simeq 2^{-n}$$
: prob. $\simeq 2^{-n}$

$$W(s) \simeq 2^{-n}$$
 (given $W(t) \simeq 2^{-n}$): prob. $\simeq \frac{2^{-n}}{2\ell-n} = 2^{-\ell}$.

$$F(t) \cap F(s)$$
: first both paths reach level 2^{k-n} units: prob. $\left[(2^{-k})^{\lambda_1}\right]^2$

In the big rectangle, the maximum of W is $\simeq 2^{\ell-n}$. Starting from this level, one path (at least) must reach level 1 before 0: prob. $\simeq (2^{\ell-n})^{\lambda_1}$.

A good bound is obtained by multiplying these factors (even though the events are not independent!).

Part 2 (continued)

Lemma

For
$$s,t\in[1,2]^2$$
, with $|s_1-t_1|\simeq 2^{2(k-n)}$, $|s_2-t_2|\simeq 2^{2(\ell-n)}$ $(1\leqslant k<\ell\leqslant n)$, $P\{|W(t)|\leqslant 2^{-n},\,F(t),\,|W(s)|\leqslant 2^{-n},\,F(s)\}\leqslant 2^{-n}\,2^{-\ell}(2^{-k\lambda_1})^2(2^{\ell-n})^{\lambda_1}.$

(recall that $F(t) = \{\exists \Gamma : \Gamma(0) = t \text{ and } W(\Gamma(\cdot)) \text{ hits } 1 \text{ before } 0\}$; here x = 0.)

Explanation of each factor:

P9
$$W(t) \simeq 2^{-n}$$
: prob. $\simeq 2^{-n}$

$$W(s) \simeq 2^{-n}$$
 (given $W(t) \simeq 2^{-n}$): prob. $\simeq \frac{2^{-n}}{2^{\ell-n}} = 2^{-\ell}$.

$$F(t) \cap F(s)$$
: first both paths reach level 2^{k-n} units: prob. $\left[(2^{-k})^{\lambda_1}\right]^2$.

In the big rectangle, the maximum of W is $\simeq 2^{\ell-n}$. Starting from this level, one path (at least) must reach level 1 before 0: prob. $\simeq (2^{\ell-n})^{\lambda_1}$.

A good bound is obtained by multiplying these factors (even though the events are not independent!).

References

Mountford, T.S. (1993). Estimates of the Hausdorff dimension of the boundary of positive Brownian sheet components. *Sém. de Probabilités* XXVII *Lect. Notes in Math.* vol. 1557, pp.233-255. Springer.

Dalang, R.C. & Walsh, J.B. (1993) The structure of a Brownian bubble. *Probab. Th. Relat. Fields* 96, 475-501.

Mörters, P. & Peres, Y. (2010). Brownian motion. Cambridge University Press.

Dalang, R.C. & Mountford, T. (2017). Hausdorff dimension of the boundary of bubbles of additive Brownian motion and of the Brownian sheet (145pp). http://arxiv.org/abs/1702.08183