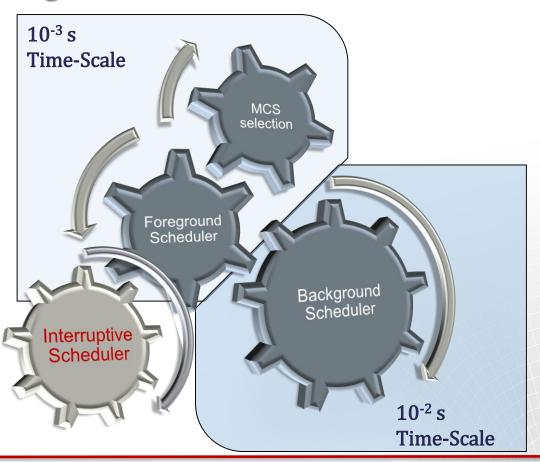


Vladimir Lyashev

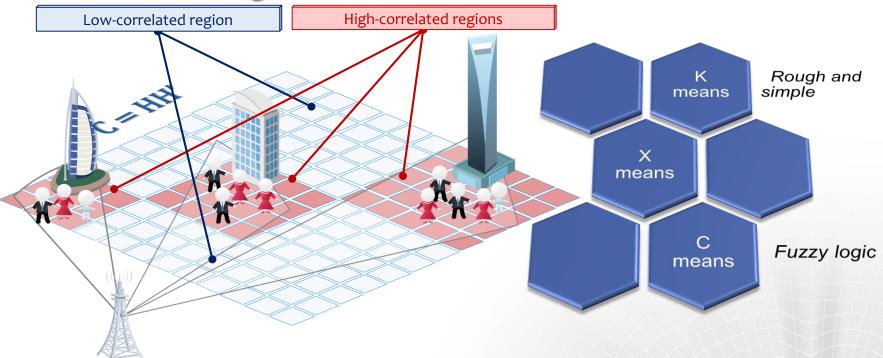
RTT Algorithm Technology Lab.

Moscow Research Center

Scheduler Slicing Architecture



Users clustering



There are many cases when users are densely placed in limited area (business centers, hotels, bus stations, etc) which makes possible to GROUP them by spatial or channel criteria and provide simple pairing – pick up a single user from each high-correlated group and pair him with users from another groups!

USERS CLUSTERING PROBLEM

Page ■ 3 Huawei Technologies

Clustering as optimization problem

Given a set of observations (x_1, x_2, x_n) , where each observation is a d-dimensional real vector, kmeans clustering aims to partition the n observations into $k \leq n$ sets $S = S_1, S_2, S_k$ so as to minimize
the within-cluster sum of squares (WCSS) (i.e. variance). Formally, the objective is to find:

$$\underset{S}{\operatorname{arg\,min}} \sum_{i=1}^{k} |S_i| \text{ var } S_i \to \underset{S}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{x \in S_i} ||x - \mu_i||^2,$$

where μ_i is the mean of points in S_i .

From geometry to channel correlation

Because the total variance is constant, this is also equivalent to maximizing the squared deviations between points in different clusters (between-cluster sum of squares).

However, it is not unique criteria for cluster description. In our task formulation, we can define another criteria that is more relevant to correlation properties of the user channels.

Let describe space properties of the channel by its main eigenvector \mathbf{v}_q for user q. Then it is possible to introduce correlation coefficient $c_{pq} = \mathbf{v}_q^H \mathbf{v}_p$, which shows spatial correlation between users p and q. In this case we can make new definition for k-mean techniques:

$$\underset{S}{\operatorname{arg\,min}} \sum_{i=1}^{k} |S_i| \text{ var } S_i \to \underset{S}{\operatorname{arg\,max}} \sum_{i=1}^{k} \sum_{q \in S_i} \dot{c}_q,$$

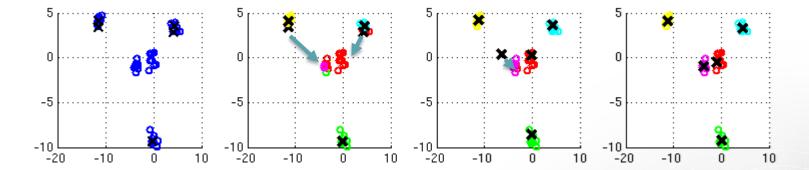
where $\dot{c}_q = \mathbf{v}_{S_i}^H \mathbf{v}_q$ - correlation between user eigenvector and centroid eigenvector, and centroid eigenvector can be defined i.e.

$$\mathbf{v}_{S_i} = \frac{\sum_{q \in S_i} \mathbf{v}_q}{\left\| \sum_{q \in S_i} \mathbf{v}_q \right\|}.$$

The most common algorithm uses an iterative refinement technique. Due to its ubiquity it is often called the k-means algorithm; it is also referred to as Lloyd's algorithm, particularly in the computer science community.

K-means

- · Fixed number of centroids
- Every iteration centroid is updating as mean of corresponding cluster points
- Stop when clusters don't change anymore



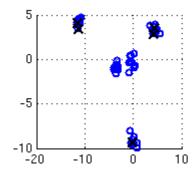
- k-means
- + Acceptable complexity
- + Guaranteed clustering (uniform)
- Low flexibility

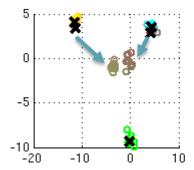
$$\arg\min_{S} \sum_{j=1}^{C} \sum_{x_i \in S_j} \|x_i - \mu_j\|^2,$$

$$\mu_j = \frac{1}{|S_j|} \sum_{x \in S_j} x_i .$$

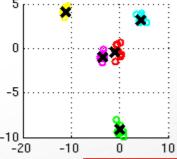
C-means

- Fixed number of centroids
- Every dot owns probability of being assigned to every centroid
- Every iteration centroid is updating as mean of corresponding cluster points weighted by probability of assigning
- Stop when clusters don't change anymore or changes of probabilities are less than a threshold









c-means

- + Acceptable complexity
- + High after-clustering versatility
- Low flexibility of cluster number selection

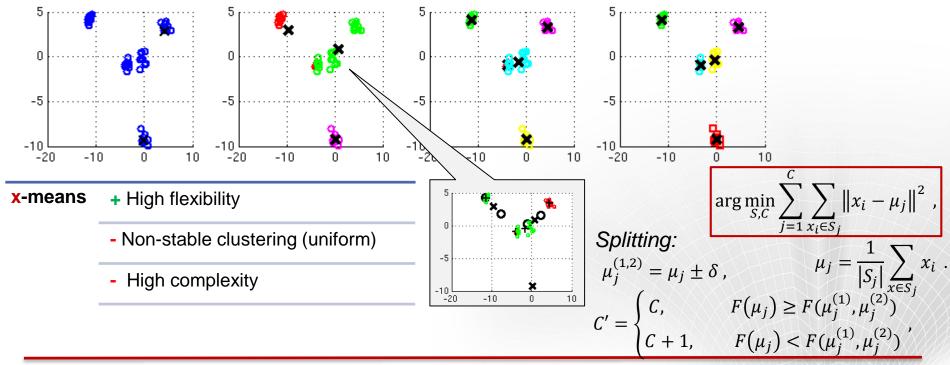
$$\arg\min_{\mu} \sum_{j=1}^{C} \sum_{i=1}^{N} u_{ij}^{m} ||x_{i} - \mu_{j}||^{2}$$

$$\mu_{ij} = \frac{1}{\sum_{k=1}^{C} \left(\frac{\|x_i - \mu_j\|^2}{\|x_i - \mu_k\|^2} \right)^{\frac{2}{m-1}}}, \quad \mu_j = \frac{\sum_{i=1}^{N} u_{ij}^m x_i}{\sum_{i=1}^{N} u_{ij}^m}$$

$$1 < m < \infty,$$

X-means

- Starts from minimal number of clusters (~2)
- Every iteration every centroid is split up to 2 centroids for which k-means procedure provided
- Splitting assumed as success if BIC of two split clusters larger than BIC of a single cluster
- Stop when splitting of any centroids doesn't bring a gain in BIC



Page ■ 8

Huawei Technologies

Split model scoring

Bayesian Information Criterion (BIC) as cluster location and number of clusters optimization

$$F_{BIC}(M_j) = \hat{l}_j(D) - \frac{p_j}{2} \cdot \log(R)$$
,

Posterior probability is used to score the models (single/split clusters) by formula mentioned in [Kass, Wasserman; 1995] based on log-likelihood of the data $\hat{l}_j(D)$.

$$\hat{\sigma}^2 = \frac{1}{R - K} \sum_{i} ||x_i - \mu_{(i)}||^2$$
,

Data variance

$$\widehat{P}(x_i) = \frac{R_{(i)}}{R} \cdot \frac{1}{\sqrt{2\pi}\widehat{\sigma}^M} \exp\left(-\frac{1}{2\widehat{\sigma}^2} \left\|x_i - \mu_{(i)}\right\|^2\right),$$

Point probabilities

$$l(D) = \log \prod_{i} P(x_i) = \sum_{i} \left(\log \frac{1}{\sqrt{2\pi}\sigma^M} - \frac{1}{2\sigma^2} \left\| x_i - \mu_{(i)} \right\|^2 + \log \frac{R_{(i)}}{R} \right), \quad \text{Log-likelihood of the data}$$

$$\hat{l}(D_n) = -\frac{R_n}{2}\log(2\pi) - \frac{R_n \cdot M}{2}\log(\hat{\sigma}^2) - \frac{R_n - K}{2} + R_n\log R_n - R_n\log R \,. \quad \begin{array}{l} \textit{Maximum likelihood estimation of the set } D_n \\ \textit{belonging to centroid } \mu_n \end{array}$$

 $M-number\ of\ dimensions$

 $K-number\ of\ clusters$

 p_j – number of free parameters

D − input set of points

 $D_i \in D$ – set of points attached to μ_i centroid

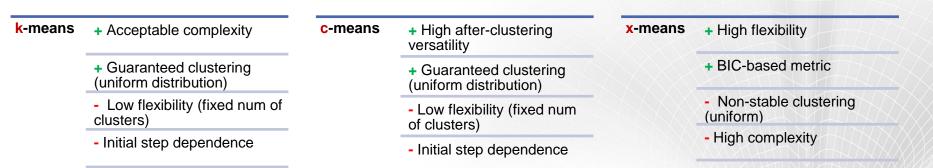
 $R = |D|, R_i = |D_i| - number of points$

Simulation results. Random generated channels

UE distrib.	Cluster limit	Sum of clusters BIC Deviation of clusters BIC Clusters max volume Clusters mean volume Mean of clusters BIC Num of clusters Clusters min volume Clusters volume's deviation								
HIGH	Ideal • Cluster Limit = 5	k-means () c-means () x-means ♥	BIC_SUM 	-755.67 -784.31 -753.3	634.21 229.2 0.10147	C1 u_NUM 	18.32 13.289	Clu_MIN 	10 10 10	Clu_DEV
• Groups = 5 • Deviation = 0.01	Oversize • Cluster Limit = 10	k-means ⊗ c-means ⊗ x-means ♥	BIC_SUM 	-158.21 -243.83 -753.3	### 407.82 355.04 0.10079	C1u_NUM 	Clu_MAX 	1.217 1.049	Clu_MEAN 5 5 10	3.423 3.7347 0
LINIEODM	Ideal • Cluster Limit = 5	k-means ♥ c-means ♥ x-means ①	BIC_SUM 4069.6 -4201 -4057.9	-813.92 -840.2 -811.58	248.16 465.87 871.49	C1 u_NUM 	13.09 15.133 20.127	7.854 4.314 1	10 10 10 10	1.9821 4.0645 6.9543
• Groups = 5 • Deviation = 1.0	Oversize • Cluster Limit = 10	k-means v c-means v x-means ()	BIC_SUM 	-186.72 -206.67 -184.43	BIC_DEV 	C1u_NUM 	9.987 10.074 10.792	1.337 0.746	C1 u_MEAN	3.1251 3.7053 4.411

Clustering: comparative analysis

	Ra	andom gene	Status		
Distribution	High-co	orrelated	Uni	form	
Cluster limit	Ideal Oversize		Ideal	Oversize	
k-means	0	8	•	•	Initialization of centroids optimization required
c-means	0	8	•	•	Initialization of centroids optimization required
x-means	•	•	0	0	 Criterion optimization Splitting rule definition



Robust Scheduling: propagation channel dynamics

Coherence time of channel plays an important role here. From theoretical point of view, coherence time T_c can define as

$$T_c = \frac{\lambda}{2v} = \frac{c}{2f_c \cdot v},$$

where c - speed of light, λ - wave length on central frequency f_c , v - speed of user.

According ray-tracing model of channel representation, each tap of discrete channel impulse response (τ_i) can be interpreted as response of in-depended ray(s), which passed through channel and according some distances d_i from transmitter to receiver. When interval coherence in frequency domain B_c can defined as

$$B_c = \frac{c}{|max(d_i) - min(d_i)|} \approx \frac{1}{\sigma_\tau},$$

where σ_{τ} is delay spread of channel impulse response.

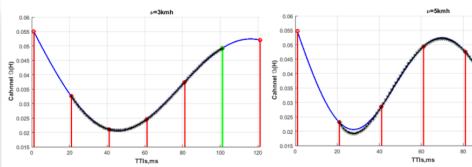
$$\tau_c = B_c T_c f$$

Robust Scheduling: propagation channel dynamics

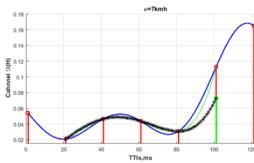
Example: $f_c = 2.6GHz$; $\sigma_{\tau} \approx 1.3us$; f = 15.36MHz.

v = 1kmh	$T_c \approx 208ms, B_c \approx 770k \text{Hz} \rightarrow \tau_c \approx 10 \ ms$
v = 2kmh	$T_c \approx 104ms, B_c \approx 770k \text{Hz} \rightarrow \tau_c \approx 5 \text{ ms}$
v = 3kmh	$T_c \approx 70 ms, \ B_c \approx 770 k Hz \rightarrow \ \tau_c \approx 3.5 \ ms$
v = 5kmh	$T_c \approx 41 ms, \ B_c \approx 770 k Hz \rightarrow \tau_c \approx 2 \ ms$
v = 7kmh	$T_c \approx 30ms, \ B_c \approx 770k \text{Hz} \rightarrow \ \tau_c \approx 1.5 \ ms$
v = 10kmh	$T_c \approx 21 ms, \ B_c \approx 770 k \text{Hz} \rightarrow \ \tau_c \approx 1 \ ms$

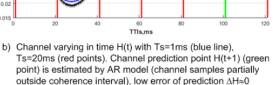
Robust Scheduling: propagation channel dynamics



 a) Channel varying in time H(t) with Ts=1ms (blue line), Ts=20ms (red points). Channel prediction point H(t+1) (green point) is estimated by AR model (channel samples inside coherence interval), ∆H→0



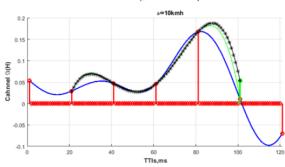
c) Channel varying in time H(t) with Ts=1ms (blue line), Ts=20ms (red points). Channel prediction point H(t+1) (green point) is estimated by AR model (more when half of channel samples outside coherence interval), error of prediction ΔH>0 is significant



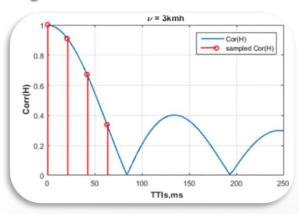
SRS H

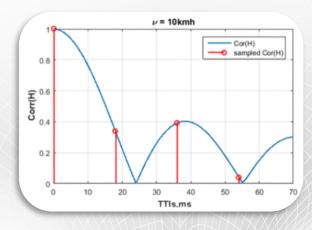
Interp (Ideal H [shift])

Interp (predict H)



d) Channel varying in time H(t) with Ts=1ms (blue line), Ts=20ms (red points). Channel prediction point H(t+1) (green point) is estimated by AR model (channel samples on the edge of aliasing), error of prediction $\Delta H \! > \! 0$ is significant





Robust scheduling: UE scores

$$Q_{i} = 10 \log_{10} \frac{1 - C_{\{S_{i}\}_{i=1}^{N}}}{\frac{1}{SNR_{i}} + \alpha(t) \frac{C_{\{S_{i}\}_{i=1}^{N}} \Delta v_{i}(t)}{N_{L}}}$$

$$C_{\{S_i\}_{i=1}^N} = \sum_{\substack{j \neq i \\ j=1....N}} v_{S_i}^H v_{S_j}$$

$$\Delta v_i(t) = \left\| v_i(T) - \left(\tilde{v}_i^H(T) v_i(T) \right) \, \tilde{v}_i(T) \right\|^2$$

15% cell throughput gain30% coverage area extension

$$\alpha(t): \begin{cases} \alpha(0) = 0; \\ \langle some\ function \rangle, t \in (0, T); \\ \alpha(T - \varepsilon) \approx 1. \end{cases}$$

Further questions...

- Complex channel vector clustering criterion definition
- X-means: clusters splitting mechanism optimization
- K/C-means: initialization of centroids optimization
- K/X-means: after-clustering correlation control
- Permanent partial cluster update
- How to define "the best" coupling function $\alpha(t)$

THANK YOU