Trace Theorem for Quasi-Fuchsian groups

Fedor Sukochev (in collaboration with Alain Connes and Dmitriy Zanin)

University of New South Wales

March 16, 2017

Aims of this talk

- Overview of the theory of Kleinian groups
- Brief review of the geometric measure theory of limit sets of Kleinian groups
- Review of the theory of extended limits and Dixmier traces
- Computing the geometric measure on limit sets

This talk is based on a forthcoming paper of Connes, Sukochev and Zanin, originally based on work by Connes detailed in [NCG].

Action of the group $SL(2,\mathbb{C})$

Let

$$\mathrm{SL}(2,\mathbb{C})=\Big\{g=egin{pmatrix} g_{11}&g_{12}\ g_{21}&g_{22} \end{pmatrix}\in M_2(\mathbb{C}):\ \det(g)=1\Big\}.$$

Also, let $\mathrm{PSL}(2,\mathbb{C}) = \mathrm{SL}(2,\mathbb{C})/\{\pm 1\}.$

We may identify the group $\mathrm{SL}(2,\mathbb{C})$ with its action on the Riemann sphere $\bar{\mathbb{C}}$ by the formula

$$g: z \to \frac{g_{11}z + g_{12}}{g_{21}z + g_{22}}, \quad z \in \bar{\mathbb{C}}.$$

We are interested in discrete subgroups of $\mathrm{SL}(2,\mathbb{C})$ such as, for example,

$$\mathrm{SL}(2,\mathbb{Z})=\Big\{g=egin{pmatrix} g_{11}&g_{12}\ g_{21}&g_{22} \end{pmatrix}\in M_2(\mathbb{Z}):\ \det(g)=1\Big\}.$$

Kleinian groups

Let $G \subset \mathrm{SL}(2,\mathbb{C})$ (or $G \subset \mathrm{PSL}(2,\mathbb{C})$) be a discrete subgroup. We say that action of G at a point $z_0 \in \overline{\mathbb{C}}$ is *freely discontinuous* if there exists a neighborhood U of z_0 such that $g(U) \cap U = \emptyset$ for every $1 \neq g \in G$. In particular, the sequence $\{g(z_0)\}_{1 \neq g \in G}$ does not accumulate to z_0 .

Definition

A discrete subgroup $G \subset \mathrm{SL}(2,\mathbb{C})$ is called Kleinian if its action is freely discontinuous at some point $z_0 \in \bar{\mathbb{C}}$.

For a Kleinian group, the set of all points at which G acts freely discontinuously is called regular set of the group G. Its complement is called the limit set of the group G. We denote the limit set by $\Lambda(G)$.

Limit set of a Kleinian group G

Lemma

For a Kleinian group, $\mathbb{C} \setminus \Lambda(G)$ is open and so $\Lambda(G)$ is closed.

If $\Lambda(G)$ contains 2 points or less, then G is one of the elementary Kleinian groups.

If $\Lambda(G)$ contains more than 2 points, then it is *perfect* (i.e., closed with no isolated points). In particular, $\Lambda(G)$ is uncountable.

Regular set is dense in $\bar{\mathbb{C}}$. So, limit set is nowhere dense.

Both regular and limit sets are G-invariant.

Quasi-Fuchsian groups

Definition

A Kleinian group G is called

- Fuchsian if its limit set is a circle
- quasi-Fuchsian if its limit set is a Jordan curve (i.e., homeomorphic to a circle)

If G is quasi-Fuchsian then by the Jordan Theorem $\Lambda(G)$ splits $\overline{\mathbb{C}}$ in 2 parts $\operatorname{int}(\Lambda(G))$ and $\operatorname{ext}(\Lambda(G))$.

Examples of quasi-Fuchsian groups

Let $a, b \in \mathrm{SL}(2, \mathbb{C})$ satisfy the condition

$$(\operatorname{Tr}(a))^2 + (\operatorname{Tr}(b))^2 + (\operatorname{Tr}(ab))^2 = \operatorname{Tr}(a) \cdot \operatorname{Tr}(b) \cdot \operatorname{Tr}(ab).$$

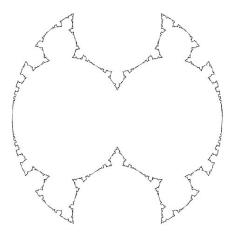
Let G(a, b) be the group generated by a and b. It is showed in the book of Mumford, Series and Wright that G(a, b) is quasi-Fuchsian.

In the same book, there is an algorithm for approximating the limit set of G(a,b).

Note that the couple (a,b) is determined modulo conjugation by the numerical couple $(\operatorname{Tr}(a),\operatorname{Tr}(b))$. The following examples and images are from the honours thesis of Jacob Geerlings.

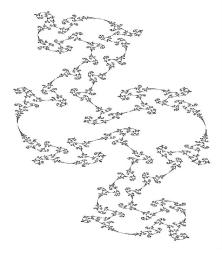
Pictures of $\Lambda(G(a,b))$

$$Tr(a) = Tr(b) = 2.2$$



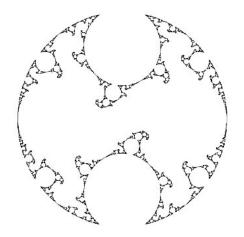
Pictures of $\Lambda(G(a, b))$

$$Tr(a) = 1.8 + 0.251i$$
, $Tr(b) = 1.8 - 0.251i$



Pictures of $\Lambda(G(a,b))$

$$Tr(a) = 1.9 + 0.3i$$
, $Tr(b) = 2.05$



Hausdorff dimension

Definition

Given a metric space (X, d), let $\mathcal{C}(X, d)$ be the set of all q > 0 such that there exists a covering of X by open balls $\{B(x_n, r_n)\}_{n=0}^{\infty}$ such that

$$\sum_{n=0}^{\infty} r_n^q < \infty.$$

The Hausdorff dimension of X is defined to be the infimum of $\mathcal{C}(X,d)$.

It is known that a limit set of a finitely generated quasi-Fuchsian group (which is not Fuchsian) has Hausdorff dimension $\dim(\Lambda(G))$ strictly greater than 1. In particular, $\Lambda(G)$ is never a smooth curve (unless G is Fuchsian).

On the other hand, $\Lambda(G)$ is a quasi-conformal image of a circle and, so (see e.g. Gehring-Vaisala-1973), its Hausdorff dimension is strictly less than 2.

Geometric measure of the group G.

Definition

A measure ν on $\bar{\mathbb{C}}$ is called a p-dimensional geometric measure (relative to G) if $d(\nu \circ g)(z) = |g'(z)|^p d\nu(z)$ for every $g \in G$.

Theorem (Sullivan-1984-Acta)

If G is a quasi-Fuchsian group where $\Lambda(G)$ has Hausdorff dimension p, then there exists a unique p-dimensional geometric measure on $\bar{\mathbb{C}}$ (relative to G). This measure is supported on $\Lambda(G)$, and is Radon on $\Lambda(G)$.

The main aim of this talk is to give a means of computing the geometric measure by means of a "Conformal Trace Formula".

General notations

Fix throughout a separable infinite dimensional Hilbert space H. We let B(H) denote the algebra of all bounded operators on H. For a compact operator T on H, let $\mu(k,T)$ denote k—th largest singular value (these are the eigenvalues of |T|). The sequence $\mu(T) = \{\mu(k,T)\}_{k\geq 0}$ is referred to as to the singular value sequence of the operator T. The standard trace on B(H) is denoted by Tr.

Fix an orthonormal basis in H (the particular choice of a basis is inessential). We identify the algebra I_{∞} of bounded sequences with the subalgebra of all diagonal operators with respect to the chosen basis. For a given sequence $\alpha \in I_{\infty}$, we denote the corresponding diagonal operator by $\operatorname{diag}(\alpha)$.

Principal ideals $\mathcal{L}_{p,\infty}$

Let $\mathcal{L}_{p,\infty}$ be the principal ideal in $B(\mathit{l}_2)$ generated by the element $A_0=\mathrm{diag}(\{(k+1)^{-\frac{1}{p}}\}_{k\geq 0})$. Equivalently,

$$\mathcal{L}_{p,\infty} = \{ A \in B(I_2) : \sup_{k \ge 0} (k+1)^{\frac{1}{p}} \mu(k,A) < \infty \}.$$

In Noncommutative Geometry, a compact operator A is called an infinitesimal of order $\frac{1}{p}$ if

$$\mu(k,A) = O((k+1)^{-\frac{1}{p}}), \quad k \in \mathbb{Z}_+.$$

In other words, $\mathcal{L}_{p,\infty}$ is the set of all infinitesimals of order $\frac{1}{p}$.

Traces on $\mathcal{L}_{1,\infty}$

Definition

A linear functional $\varphi: \mathcal{L}_{1,\infty} \to \mathbb{C}$ is called a trace if $\varphi(AB) = \varphi(BA)$ for every $A \in \mathcal{L}_{1,\infty}$ and for every $B \in \mathcal{B}(H)$.

There exists a plethora of traces on $\mathcal{L}_{1,\infty}$. The most famous ones are Dixmier traces.

Definition (Dixmier)

If ω is a free ultrafilter on \mathbb{Z}_+ , then the functional

$$A \to \lim_{n \to \omega} \frac{1}{\log(n+2)} \sum_{k=0}^{n} \mu(k, A), \quad 0 \le A \in \mathcal{L}_{1,\infty}$$

is finite and additive on the positive cone of $\mathcal{L}_{1,\infty}$. Thus, it uniquely extends to a unitarily invariant linear functional on $\mathcal{L}_{1,\infty}$.

Basic properties of traces

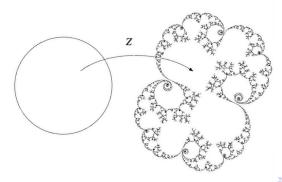
- Every Dixmier trace is positive
- ② Every positive trace is continuous with respect to the natural quasi-norm on $\mathcal{L}_{1,\infty}$
- Every continuous trace is a linear combination of 4 positive traces.
- There are positive traces which are not Dixmier traces

More information on the traces is available in [LSZ].

Statement of the main result

Let G be quasi-Fuchsian. Then by the Riemann mapping theorem, there is a conformal (i.e., biholomorphic) function $Z:\{|z|<1\}\to \operatorname{int}(\Lambda(G))$. Since $\Lambda(G)$ is a Jordan curve, the Carathèodory extension theorem for conformal mappings tells us that Z extends to a continuous function

$$Z:\{|z|=1\}\to \Lambda(G).$$



Statement of the main result

Let F be the Hilbert transform on the circle (the sign of the differentiation operator). All the operators below act on $L_2(\mathbb{S}^1)$.

Theorem

Let G be a finitely generated quasi-Fuchsian (but not Fuchsian) without parabolic elements. Let $p = \dim(\Lambda(G))$. We have $[F, Z] \in \mathcal{L}_{p,\infty}$ and

$$\varphi(f(Z)|[F,Z]|^p) = c(G,\varphi) \int_{\Lambda(G)} f(z) d\nu(z), \quad f \in C(\Lambda(G)),$$

for every continuous trace φ on $\mathcal{L}_{1,\infty}$. Here, ν is the p-dimensional geometric measure.

History and credits

The preceding theorem was stated in [NCG] for the groups which arise in Bers's theorem on simultaneous uniformization (for Dixmier traces only). Strategy of the proof is given in [NCG] and it is stated there that a full proof will be available in a subsequent paper by Connes and Sullivan. This paper never appeared and the strategy proposed in [NCG] is vulnerable to a number of heavy obstacles of technical nature. These obstacles were fully resolved by the authors in [C-S-Z] using Double Operator Integral theory and a number of important auxiliary results by other authors (most notable: Sullivan [Sul-79,Sul-84] and Bishop-Jones [B-J]).

Proof strategy

The first step in the proof is to show that $[F,Z] \in \mathcal{L}_{p,\infty}$. Hence from the Riesz theorem,

$$\varphi(f(Z)|[F,Z]|^p) = \int_{\Lambda(G)} f \, d\mu, \quad f \in C(\Lambda(G)),$$

for some measure μ . The second step in the proof is to show that

$$\varphi(f(g^{-1}(Z))|[F,Z]|^p) = \varphi(f(Z)|g'(Z)|^p|[F,Z]|^p), \quad f \in C(\Lambda(G)).$$

The *p*-dimensional geometric measure, satisfying $d(\nu \circ g) = |g'|^p d\nu$, is uniquely specified up to a scaling factor by the relation, for all $f \in C(\Lambda(G))$,

$$\int_{\Lambda(G)} f \circ g^{-1} d\nu = \int_{\Lambda(G)} f \cdot |g'|^p d\nu. \tag{1}$$

Since μ satisfies the covariance property in (1), it follows from the uniqueness part of Sullivan's theorem that $\mu = \nu$ (up to a constant factor).

Hausdorff dimension vs critical exponent

First we prove that $[F,Z] \in \mathcal{L}_{p,\infty}$.

Lemma

If G is a finitely generated quasi-Fuchsian group, then Hausdorff dimension of $\Lambda(G)$ equals to the critical exponent of G.

$$\dim(\Lambda(G)) = \inf\Big\{q: \ \sum_{g \in G} |g'(z)|^q < \infty \ \text{for almost every} \ z \in \bar{\mathbb{C}}\Big\}.$$

Proof.

[Thanks to C. Bishop] We have $\dim(\Lambda(G)) < 2$. By Ahlfors Finiteness Theorem, G is analytically finite. By Bishop-Jones theorem [B-J], G is geometrically finite. By Theorem 1 in [Sul-84], Hausdorff dimension equals to the critical exponent.

Key lemma

The proof of the following lemma combines Peller's characterization of Hankel operators in \mathcal{L}_p , Stein's description of the holomorphic part of Besov spaces, real interpolation of analytic Besov classes and fine properties of Fuchsian (!) groups.

Lemma

Let G be a finitely generated quasi-Fuchsian group without parabolic elements. If p is the critical exponent of G, then

$$||[F,Z]||_{p,\infty} \le c(G) ||\Big\{\frac{1}{|g_{21}|^2}\Big\}_{1 \ne g \in G}\Big||_{p,\infty}.$$

Thus, in order to conclude that $[F,Z]\in\mathcal{L}_{p,\infty}$, it suffices to obtain that $\left\{\frac{1}{|g_{21}|^2}\right\}_{1\neq\sigma\in G}\in I_{p,\infty}(G)$.

Sullivan's estimates

A few hours of meditation over Corollary 5 in [Sul-79] yields.

Lemma

If G is a Kleinian group with critical exponent p, then $\{\|g\|_{\infty}^{-2}\}_{g\in G}\in I_{p,\infty}(G)$.

If $\infty \notin \Lambda(G)$, then $\|g\|_{\infty} = O(|g_{21}|), 1 \neq g \in G$. As a corollary, we get

Corollary

If G is a Kleinian group with critical exponent p and if $\infty \notin \Lambda(G)$, then $\{|g_{21}|^{-2}\}_{1\neq g\in G}\in I_{p,\infty}(G)$.

Using lemma from the preceding slide, we infer that $[F,Z] \in \mathcal{L}_{p,\infty}$.

Unitary transform

Set

$$g \circ Z = Z \circ \pi(g), \quad g \in G,$$

where $\pi(g)$ is a conformal automorphism of the unit ball. For every conformal automorphism h of $D = \{|z| < 1\}$, we set

$$(U_h\xi)(z) = \xi(\frac{h_{11}z + h_{12}}{h_{21}z + h_{22}})\frac{1}{h_{21}z + h_{22}}, \quad |z| = 1.$$

We have that $U_h: L_2(\partial D) \to L_2(\partial D)$ is a unitary operator. It is of crucial importance that (Lemma 6.4 in [C-S-Z]) U_h commutes with F.

We have

$$(f \circ g^{-1})(Z) = U_{\pi(g)}^{-1} f(Z) U_{\pi(g)},$$

 $[F, Z] = U_{\pi(g)}^{-1} [F, g \circ Z] U_{\pi(g)}.$

The transformation property

We wish to show that,

$$\varphi(f(g^{-1}(Z))|[F,Z]|^p) = \varphi(f(Z)|g'(Z)|^p|[F,Z]|^p).$$

Using the identities from the previous slide and unitary invariance of φ , we obtain

$$\varphi(f(g^{-1}(Z))|[F,Z]|^{p}) = \varphi(U_{\pi(g)}^{-1}f(Z)|[F,g\circ Z]|^{p}U_{\pi(g)})$$

= $\varphi(f(Z)|[F,g\circ Z]|^{p}).$

It suffices now to show that

$$\varphi(f(Z)|[F,g\circ Z]|^p)=\varphi(f(Z)|g'(Z)|^p|[F,Z]|^p).$$

Since f is bounded, it would be enough to know that

$$|[F,g\circ Z]|^p-|g'(Z)|^p|[F,Z]|^p\in (\mathcal{L}_{1,\infty})_0.$$

The transformation property

By Theorem 8.a in Section IV.3. β in Connes-NCG and by the first few lines of the proof of Lemma 6.3 in [C-S-Z], we have

$$[F,g\circ Z]-g'(Z)[F,Z]\in (\mathcal{L}_{p,\infty})_0.$$

This implies (see the proof of Lemma 6.3 in [C-S-Z])

$$|[F,g\circ Z]|^p-\left||g'(Z)|^{\frac{1}{2}}|[F,Z]||g'(Z)|^{\frac{1}{2}}\right|^p\in (\mathcal{L}_{1,\infty})_0.$$

We then wish to conclude (see the statement of Lemma 6.3 in [C-S-Z]),

$$|[F,g\circ Z]|^p-|[F,Z]|^p|g'(Z)|^p\in (\mathcal{L}_{1,\infty})_0.$$

This conclusion requires much more work (done in Lemma 5.3 in [C-S-Z]).

Operator estimates

To conclude the assertion on the preceding slide, we use the following theorem (it is adjusted Lemma $3.\beta.11$ in [NCG]).

Theorem

Let $A, B \geq 0$ be bounded. If $B \in \mathcal{L}_{p,\infty}$ and if $[A^{\frac{1}{2}}, B] \in (\mathcal{L}_{p,\infty})_0$, then

$$B^p A^p - (A^{\frac{1}{2}} B A^{\frac{1}{2}})^p \in (\mathcal{L}_{1,\infty})_0.$$

We use this theorem for A = |g'(Z)| and B = |[F, Z]|. Note that (done in the proof of Lemma 6.3 in [C-S-Z]) the commutator condition of the above theorem indeed holds for so-defined A and B.

Integral representation

If A and B are positive bounded operators, then [Thanks to D. Potapov]

$$B^{p}A^{p}-(A^{\frac{1}{2}}BA^{\frac{1}{2}})^{p}=T(0)-\int_{\mathbb{R}}T(s)h(s)ds.$$

Here, $s \to T(s)$ is some operator-valued function (in this talk, we do not provide a particular expression for it) and h is a fixed Schwartz function.

For this integral representation we prove that $T(s) \in (\mathcal{L}_{1,\infty})_0$ for every $s \in \mathbb{R}$. Then [Lying through our teeth]

$$\int_{\mathbb{R}} T(s)h(s)ds \in (\mathcal{L}_{1,\infty})_0.$$

Final result

Combining the above arguments, there is a constant $c(G, \varphi)$ such that

$$\varphi(f(Z)|[F,Z]|^p) = c(G,\varphi) \int_{\Lambda(G)} f \, d\nu.$$

This formula is not interesting if $c(G,\varphi)=0$, so we also show that $c(G,\varphi)>0$ for at least some φ . In particular, $c(G,\mathrm{Tr}_\omega)>0$ when ω is a power-invariant extended limit.

References

- [B-J] Bishop C., Jones P. Hausdorff dimension and Kleinian groups.
- [NCG] Connes A. Noncommutative Geometry.
- [CSZ] Connes A., Sukochev F., Zanin D. *Trace Theorem for quasi-Fuchsian groups*.
- [LSZ] Lord S., Sukochev F., Zanin D. Singular traces. Theory and applications.
- [Sul-79] Sullivan D. The density at infinity of a discrete group of hyperbolic motions.
- [Sul-84] Sullivan D. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups.

