

Semiclassical Classification of Periodic Orbits in Quantum Many-Body Systems

Daniel Waltner

with Maram Akila, Boris Gutkin, Petr Braun, Thomas Guhr

Dynamics in Siberia,

Novosibirsk, 2018

Outline

Introduction to quantum chaos and semiclassics

 Semiclassical connection for the short-time behavior of a quantum many-body system

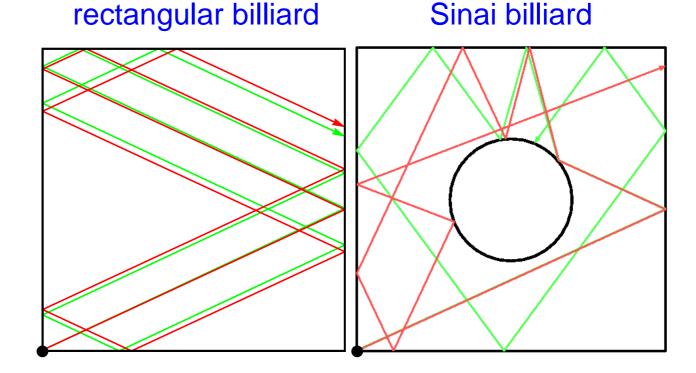
Establish a quantum evolution of reduced dimension

Impact of collective dynamics on the quantum spectrum

Classical Chaos

Fundamental aspect:

Classical dynamics: chaotic and integrable dynamics



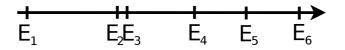
Quantum chaos: impact of the classical dynamics on the quantum system?

Quantum physics: notion of orbit undefined (Heisenberg uncertainty principle)

Quantum Chaos

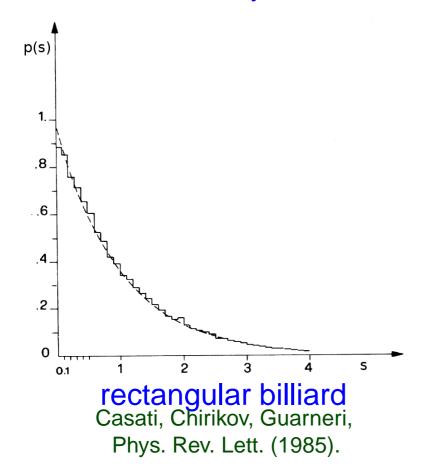
Statistical properties of the quantum spectrum:

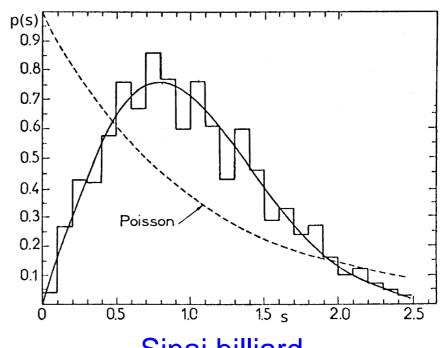
Spectrum:



Nearest neighbor spacing distribution:

s: distance between adjacent levels on scale of mean level spacing

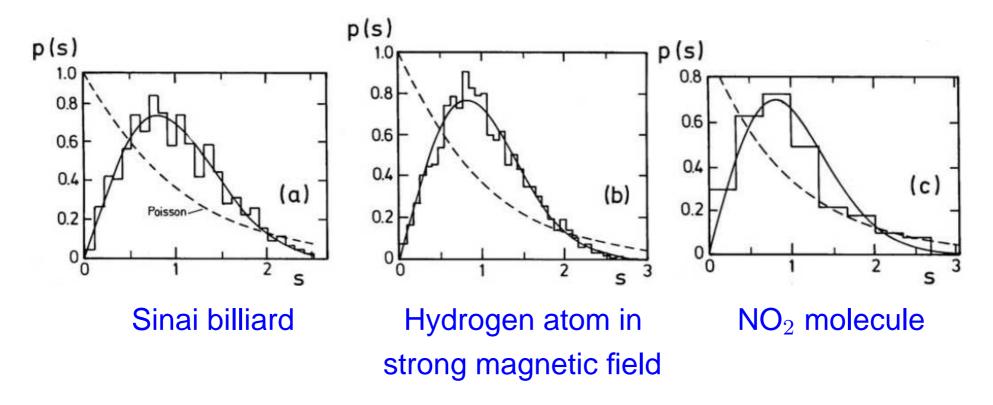




Sinai billiard Bohigas, Giannoni, Schmit, Phys. Rev. Lett. (1984).

BGS-conjecture

Nearest neighbor spacing distribution for other chaotic systems:



Bohigas-Giannoni-Schmit conjecture:

Wigner distribution describes nearest neighbor distribution of classically chaotic systems Bohigas, Giannoni, Schmit, Phys. Rev. Lett. (1984).

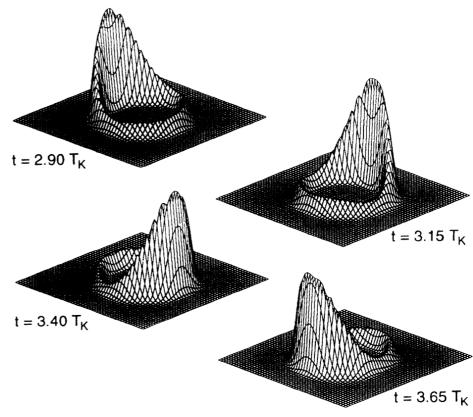
⇒ Universality

Semiclassics

Traces of classical orbits in the quantum system

Example:

Highly excited states in hydrogen atom (Rydberg states):



Gaeta, Noel, Stroud, Phys. Rev. Lett. (1994).

Semiclassics

Semiclassics combines classical (orbits) and quantum elements (interference)

Example: Gutzwiller trace formula for chaotic systems:

$$\rho(E) = \underbrace{\sum_{n=1}^{\infty} \delta(E - E_n)}_{\text{quantum level}} \sim \overline{\rho}(E) + \frac{1}{\hbar} \text{Re} \underbrace{\sum_{\gamma} A_{\gamma} \mathrm{e}^{iS_{\gamma}/\hbar}}_{\text{quantum level}}, \quad \hbar \ll S_{\gamma}$$

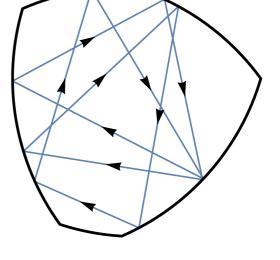
$$\underbrace{\sum_{n=1}^{\infty} \delta(E - E_n)}_{\text{quantum level}} \quad \underbrace{\sum_{\gamma} A_{\gamma} \mathrm{e}^{iS_{\gamma}/\hbar}}_{\text{quantum level}}, \quad \hbar \ll S_{\gamma}$$

$$\underbrace{\sum_{\gamma} A_{\gamma} \mathrm{e}^{iS_{\gamma}/\hbar}}_{\text{quantum level}}, \quad \hbar \ll S_{\gamma}$$

$$\underbrace{\sum_{\gamma} A_{\gamma} \mathrm{e}^{iS_{\gamma}/\hbar}}_{\text{quantum level}}, \quad \hbar \ll S_{\gamma}$$

$$\underbrace{\sum_{\gamma} A_{\gamma} \mathrm{e}^{iS_{\gamma}/\hbar}}_{\text{quantum level}}, \quad \hbar \ll S_{\gamma}$$

Gutzwiller, J. Math. Phys. (1971).

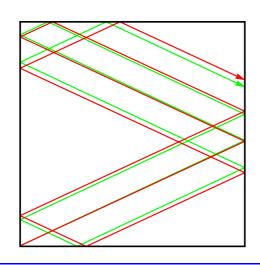


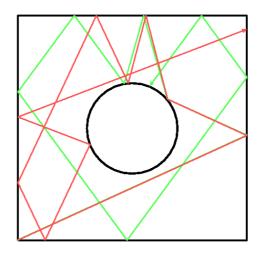
Quantum Chaos

Connection between classical and quantum mechanics:

Integrable Motion

Chaotic Motion





Einstein-Brillouin Keller quantization:

$$J_i = \frac{1}{2\pi} \oint_{\gamma_i} \mathbf{p} d\mathbf{q} = n_i \hbar$$

Gutzwiller trace formula:

quantization:
$$\rho(E) = \sum_{n} \delta(E - E_{n})$$
$$J_{i} = \frac{1}{2\pi} \oint_{\gamma_{i}} \mathbf{p} d\mathbf{q} = n_{i}\hbar \qquad \sim \overline{\rho}(E) + \frac{1}{\hbar} \operatorname{Re} \sum_{\gamma} A_{\gamma} e^{iS_{\gamma}/\hbar}$$

Motivation

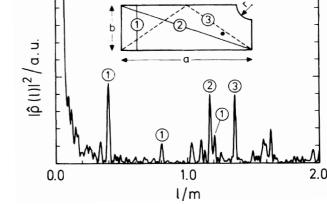
Semiclassical connection for a single particle:

Gutzwiller trace formula:

$$\rho(E) = \underbrace{\sum_{n} \delta(E - E_n)}_{n} \sim \overline{\rho}(E) + \frac{1}{\hbar} \mathrm{Re} \underbrace{\sum_{\gamma} A_{\gamma} \mathrm{e}^{iS_{\gamma}/\hbar}}_{\gamma}$$
 quantum level sum over periodic orbits with action S_{γ} and stability coefficient A_{γ}

Single-particle systems:

• Billiards: $S_{\gamma}=\hbar k l_{\gamma}$: Fourier-transform with respect to k: Spectrum of the classical orbits $\delta(l-l_{\gamma})$ Stöckmann, Stein (1990)



Kicked top: Fourier-transform with
 respect to spin quantum number s Kuś, Haake, Delande (1993)

Kicked Top

Hamiltonian:

$$\hat{H}(t) = \frac{4J(\hat{s}_z)^2}{(s+1/2)^2} + \frac{2\mathbf{B} \cdot \hat{\mathbf{s}}}{(s+1/2)} \sum_{n=-\infty}^{\infty} \delta(t-n)$$

Kick part of kicked top:

Quantum

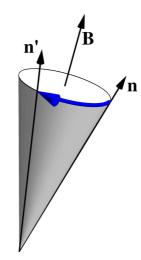
$$\hat{H}_K = \frac{2\mathbf{B} \cdot \hat{\mathbf{s}}}{s + 1/2}$$

$$\hat{U}_K = \exp\left(-i(s+1/2)\hat{H}_K\right)$$

with

- magnetic field $\mathbf{B} = (B^x, 0, B^z)$
- spin vector $\hat{\mathbf{s}} = (\hat{s}_x, \hat{s}_y, \hat{s}_z)$
- spin quantum number s

Classical



$$\mathbf{n}(t+1) = R_{\mathbf{B}}(2|\mathbf{B}|)\mathbf{n}(t)$$

- unit vector $\mathbf{n}(t)$
- rotation around B with angle $2|\mathbf{B}|$: $R_{\mathbf{B}}(2|\mathbf{B}|)$

Kicked Top

"Ising" part of kicked top:

Quantum

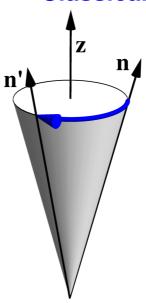
$$\hat{H}_I = \frac{4J(\hat{s}_z)^2}{(s+1/2)^2}$$

$$\hat{U}_I = \exp\left(-i(s+1/2)\hat{H}_I\right)$$

with

- "Ising" coupling J
- spin vector $\hat{\mathbf{s}} = (\hat{s}_x, \hat{s}_y, \hat{s}_z)$
- spin quantum number s

Classical



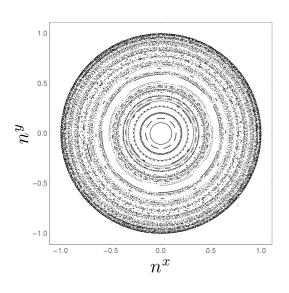
$$\mathbf{n}(t+1) = R_{\mathbf{z}}(8Jn^z)\mathbf{n}(t)$$

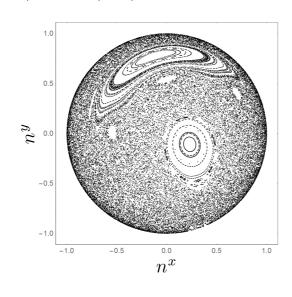
- unit vector $\mathbf{n}(t)$
- rotation around z with angle $8Jn^z$: $R_z(8Jn^z)$

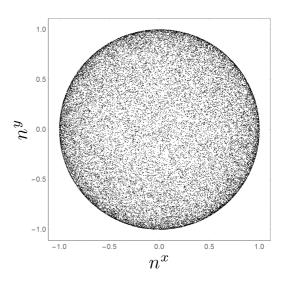
Kicked Top - Classical Dynamics

Combination of kick and Ising part: $\hat{U} = \hat{U}_I \hat{U}_K$

Parameters: $\tan \beta = B^x/B^z$, $|\mathbf{B}| = 1.27$, J = 0.7







$$\beta = 0$$

$$\beta = 0.2$$

$$\beta = \pi/4$$

regular

mixed

chaotic

Classical Motion

Many-particle systems: relative motion of particles provides additional degree of freedom

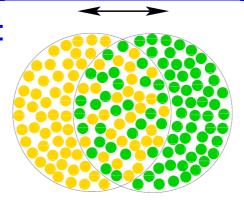
Nuclear physics:

Coherent (collective) motion

Incoherent single particle motion

Giant-Dipole Resonance:

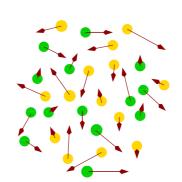
Baldwin, Klaiber (1947)



Scissor Mode:

Bohle, et al. (1984)

⇒ Description by effective models



Aims

 Quantum many-body systems: identify classical periodic orbits in non-integrable system and their impact on the quantum spectrum

Replace effective degrees of freedom by microscopic degrees of freedom

Understand short time collective motion

Start with easily accessible system

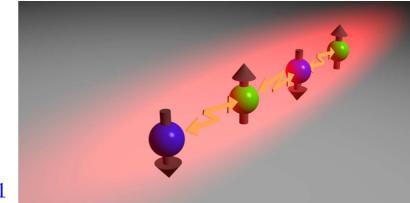
Kicked Spin Chain

N-particle quantum system: kicked spin chain consisting of N coupled spin-s-particles:

$$\hat{H}(t) = \sum_{n=1}^{N} \frac{4J\hat{s}_{n+1}^z \hat{s}_n^z}{(s+1/2)^2} + \frac{2}{s+1/2} \sum_{n=1}^{N} \mathbf{B} \cdot \hat{\mathbf{s}}_n \sum_{\tau=-\infty}^{\infty} \delta(t-\tau)$$

nearest
neighbor Ising
interaction

local kick part



Periodic boundary conditions: $\hat{\mathbf{s}}_{N+1} = \hat{\mathbf{s}}_1$

Experiments for s=1/2 in groups of Bloch (Munich), Greiner (Harvard),

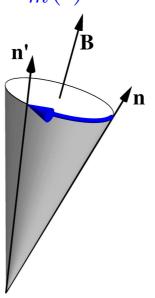
Jochim (Heidelberg), Monroe (Maryland)

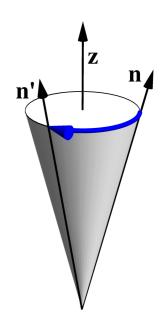
Classical Dynamics

Classical state in kicked spin chain represented as unit vector $\mathbf{n}_m(t)$ on the Bloch sphere for spin m with dynamics:

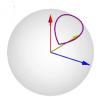
Rotation: $\mathbf{n}_m(t+T) = (R_{\mathbf{z}}(4J\chi_m)R_{\mathbf{B}}(2|\mathbf{B}|))^T \mathbf{n}_m(t)$

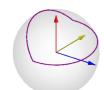
Angle: $\chi_m = n_{m-1}^z + n_{m+1}^z$

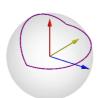


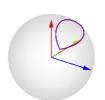


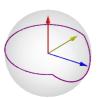
Periodic orbits for T = 1, N = 7:

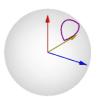


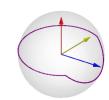












Semiclassics

Trace formula for isolated orbits:

$$\operatorname{Tr} \hat{U}^T \sim \sum_{\gamma(T)} A_{\gamma} e^{isS_{\gamma}}$$

with periodic orbits $\gamma(T)$, stability prefactor A_{γ} , action S_{γ}

Limit: Large spin quantum number $s\gg 1$

Fourier-transform yields action spectrum:

$$\rho(S) \propto \sum_{s=1}^{s_{\text{cut}}} e^{-isS} \text{Tr} \hat{U}^T \sim \sum_{\gamma(T)} A_{\gamma} \delta(S - S_{\gamma})$$

Waltner, Braun, Akila, Guhr, J. Phys. A (2017).

Duality Relation

Problem specific for many-body system:

$$\rho(S) \propto \sum_{s=1}^{s_{\text{cut}}} e^{-isS} \text{Tr} \hat{\underline{U}}^T \sim \sum_{\gamma(T)} A_{\gamma} \delta(S - S_{\gamma})$$

$$(2s+1)^{N}$$

-dimensional

Example: $s_{\text{cut}} = 10$, $N = 20 \rightarrow (2s+1)^{N} = 2.8 \cdot 10^{26}$

Solution: Duality of propagations in time and particle directions

Gutkin, Osipov, Nonlinearity (2016); Akila, Waltner, Gutkin, Guhr, J. Phys. A (2016).

Duality Relation

Aim: Reduce dimension of \hat{U}^T

Time evolution: \hat{U}

$$|\psi(t+1)\rangle = \hat{U} |\psi(t)\rangle$$

Particle evolution: \tilde{U}

$$\left|\widetilde{\psi}(n+1)\right\rangle = \widetilde{U}\left|\widetilde{\psi}(n)\right\rangle$$

Duality:

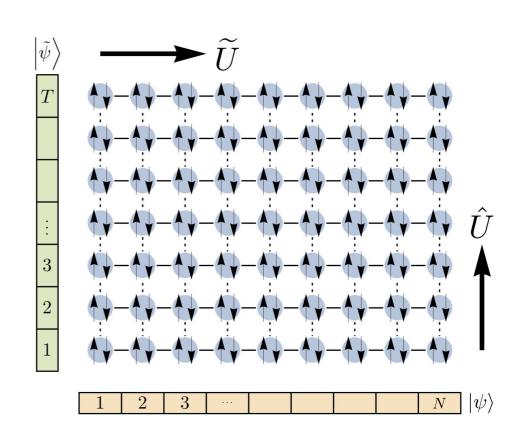
$$\operatorname{Tr} \hat{U}^T = \operatorname{Tr} \widetilde{U}^N$$

with non-unitary operator \widetilde{U}

Dimension:

$$\dim \widetilde{U} = (2s+1)^T \times (2s+1)^T$$

⇒ Dimensional reduction achieved for short times

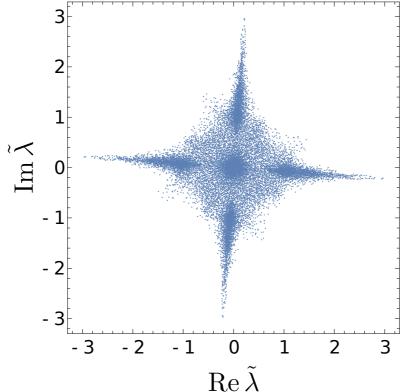


Dual Operator

Generality of this approach:

- Interaction part diagonal in some basis
- Kick part acts locally

Eigenvalues $\tilde{\lambda}$ of \widetilde{U} for J=0.6, $B^x=B^z=0.9$, s=100, T=2:



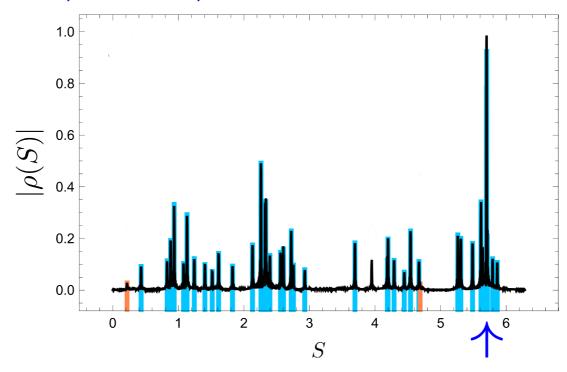
Akila, Waltner, Gutkin, Guhr, J. Phys. A (2016).

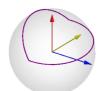
Action Spectrum T=1

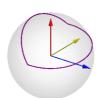
Periodic orbits in spin chain identified

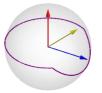
$$\rho(S) \propto \sum_{s=1}^{s_{\text{cut}}} e^{-isS} \text{Tr} \widetilde{U}^N \sim \sum_{\gamma(T)} A_{\gamma} \delta(S - S_{\gamma})$$

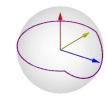
Parameters: N = 7, J = 0.75, $B^x = B^z = 0.9$







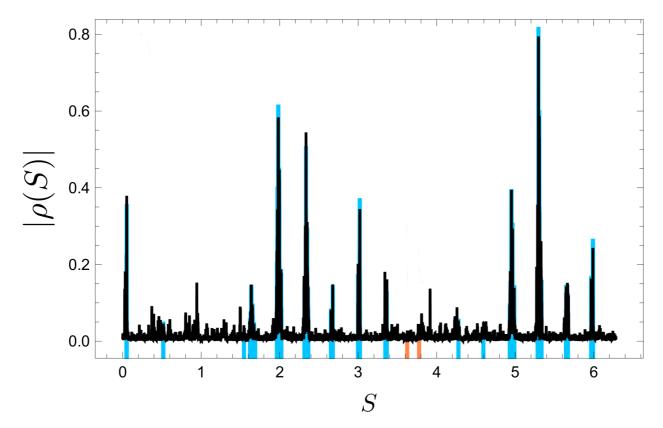




Action Spectrum T=1

Larger N: number of orbits competes with resolution

Parameters: N = 19, J = 0.7, $B^x = B^z = 0.9$,

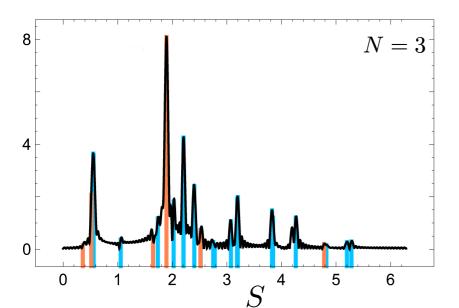


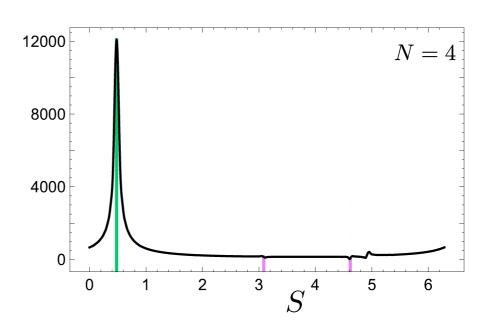
Akila, Waltner, Gutkin, Braun, Guhr, Phys. Rev. Lett. (2017).

Dominance of Collectivity

Parameters: T = 2, J = 0.7, $B^x = B^z = 0.9$

$$N=3$$



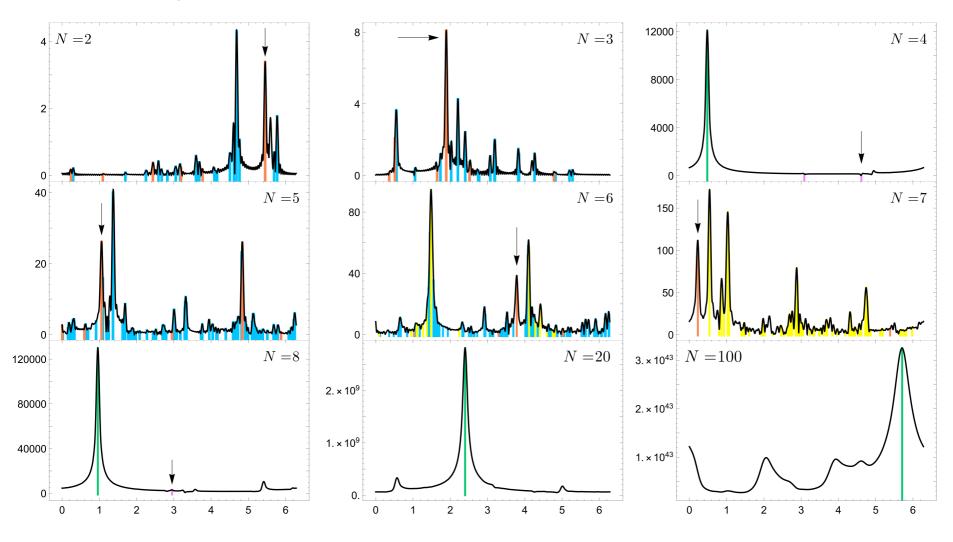


Collective motion

Akila, Waltner, Gutkin, Braun, Guhr, Phys. Rev. Lett. (2017).

Dominance of Collectivity

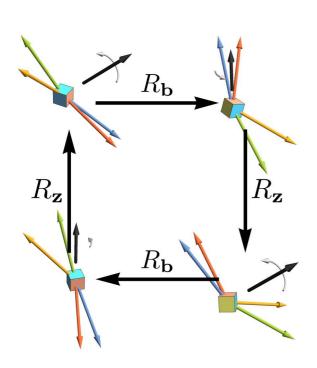
Observation generalizes to N=4k ($k \in \mathbb{N}$):

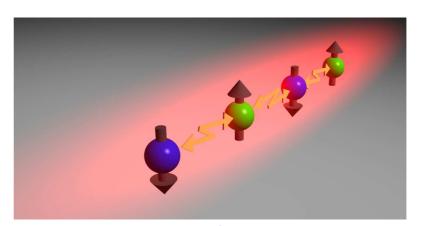


Classical Collective Dynamics

4-dimensional manifold of (nonisolated) periodic orbits for N=4 with equal actions:

spins perform solid body rotation





Akila, Waltner, Gutkin, Braun, Guhr, Phys. Rev. Lett. (2017).

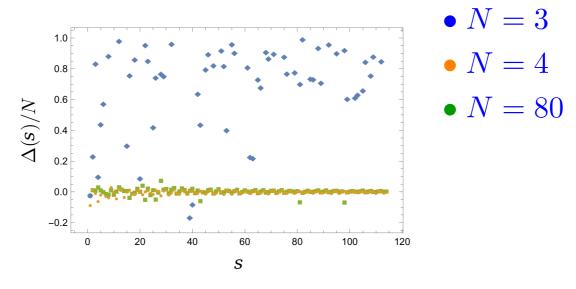
Dominance of Collectivity

Orbits on manifold dominate spectrum for specific s

$$\operatorname{Tr} \hat{U}^T \sim \sum_{\gamma(T)} A_{\gamma} e^{isS_{\gamma}} \approx A_{\operatorname{man}} e^{isS_{\operatorname{man}}}$$

Difference of the phase:

$$\Delta(s) = \text{ImLogTr}U^T - sS_{\text{man}}$$



 $\Rightarrow {
m Tr} \hat{U}^T$ dominated by a type of collective motion

Akila, Waltner, Gutkin, Braun, Guhr, Phys. Rev. Lett. (2017)

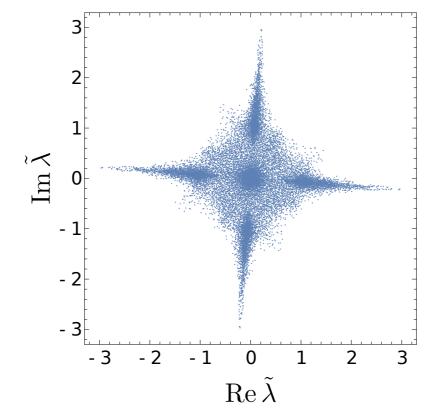
Dual Operator and Collectivity

Compute $\rho(S)$ with duality:

$$\rho(S) \propto \sum_{s=1}^{s_{\text{cut}}} e^{-isS} \text{Tr} U^T = \sum_{s=1}^{s_{\text{cut}}} e^{-isS} \text{Tr} \widetilde{U}^N$$

Eigenvalues $\tilde{\lambda}$ of the dual operator: $T=2, J=0.6, B^x=B^z=0.9,$

s = 100



Relation to Dual Operator

For $N \gg 1$:

 ${
m Tr} \widetilde{U}^N$ approximated by 4 eigenvalues with largest magnitude $\lambda_{{
m max},n}$:

$$\operatorname{Tr}\widetilde{U}^N pprox \sum_{n=1}^4 \lambda_{\max,n}^N$$

with the eigenvalues $\lambda_{\max,n} = a e^{i\varphi_n}$ with

$$\varphi_n = \varphi + \pi n/2$$

- \Rightarrow Contribution from $\lambda_{\max,n}$ to $\mathrm{Tr}\widetilde{U}^N$:
 - cancels for $N \neq 4k$ due to n-dependent phase
 - dominates for N=4k
- \Rightarrow Large contributions to ${
 m Tr} \widetilde{U}^N$ only for N=4k

Peak heights

Action spectrum:

$$\rho(S) \propto \sum_{s=1}^{s_{\text{cut}}} e^{-isS} \text{Tr} \widetilde{U}^N \sim \sum_{\gamma(T)} A_{\gamma} \delta(S - S_{\gamma})$$

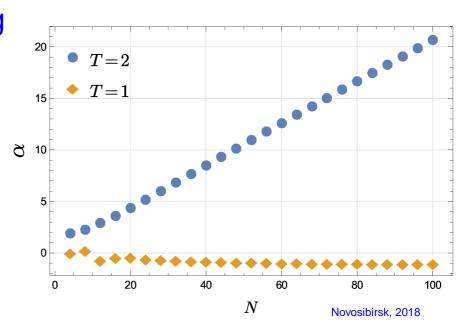
Two cases:

- For isolated orbits: A_{γ} predictable by trace formula, independent of s_{cut}
- For orbit families (manifolds): scaling of $|\rho(S_{\gamma})| \sim (s_{\rm cut})^{\alpha}$ induces

$$A_{\gamma} \sim s^{\alpha}$$

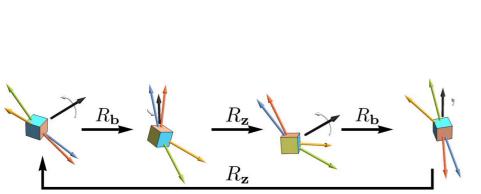
For manifold we find:

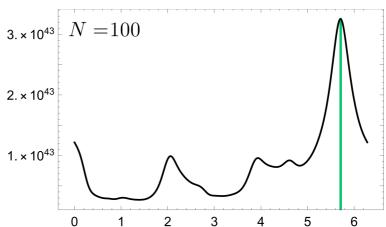
$$\alpha \propto N$$



Conclusions

- Established method to compute classical orbits in quantum many-particle system and identified impact on quantum spectrum for a spin chain
- Duality reduces dimension of \hat{U}^T by an exchange of N and T
- Collective dynamics dominates the quantum spectrum





Conclusions

- Established method to compute classical orbits in quantum many-particle system and identify impact on quantum spectrum for a spin chain
- Duality reduces dimension of \hat{U}^T by an exchange of N and T
- Collective dynamics dominates the quantum spectrum

Thank you for your attention!