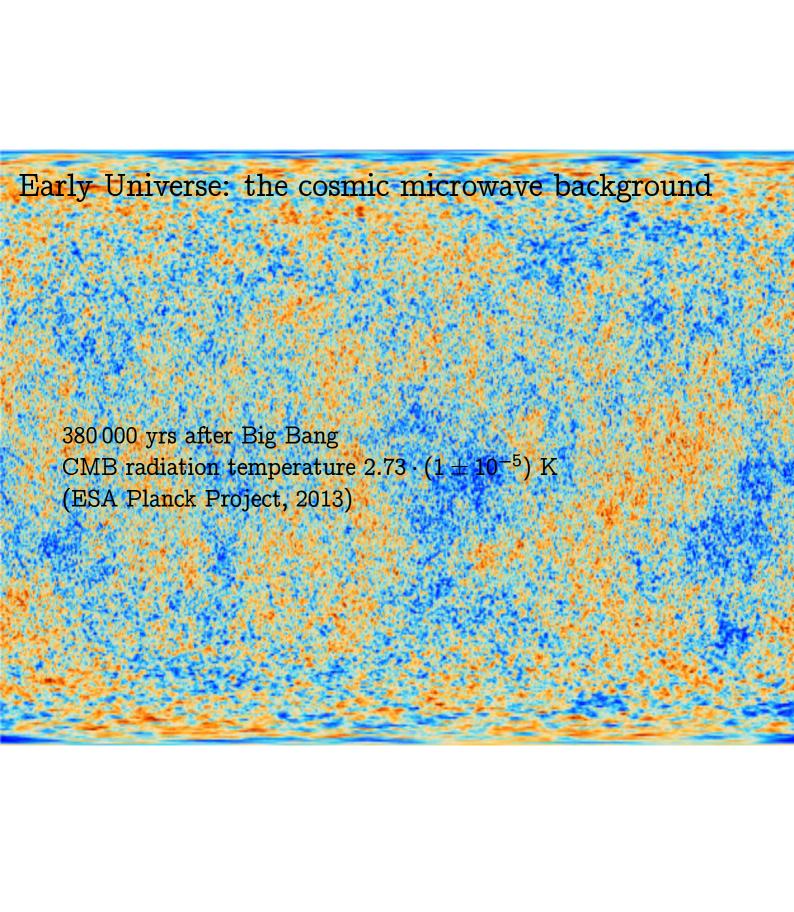
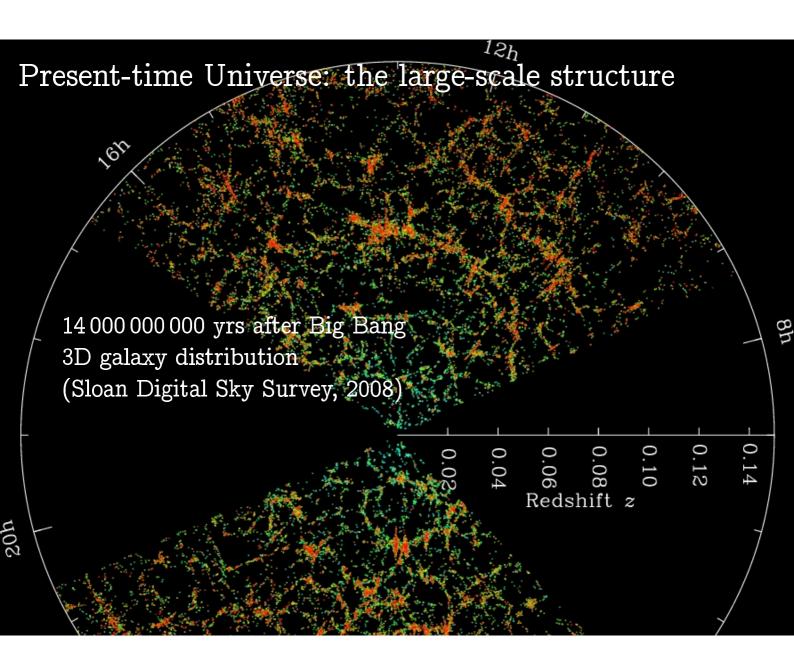
Metric in the space of measures: from fortification to cosmology

Andrei Sobolevski

Institute for Information Transmission Problems (Kharkevich Institute)
Russian Academy of Sciences

MIPT, January 2018





"Numerical" Universe: N-body simulations 31.25 Mpc/h "Millennium Run": $ightharpoonup N = 2160^3 pprox 10^{10} ext{ particles}$ ▶ particle mass $9 \cdot 10^8 M_{\odot}$ ► 500 × 500 × 500 Mpc periodic boundary conditions ▶ phenomenological models of star and galaxy formation V. Springel et al, Nature (2005) doi:10.1038/nature03597

The Euler-Poisson equations

$$rac{\partial
ho}{\partial t} +
abla \cdot (
ho \, V) = 0$$

mass conservation

$$rac{\partial\,V}{\partial t} + (\,V\cdot
abla)\,\,V = -
abla\Phi$$

Euler equation

$$abla^2 \Phi = 4\pi G
ho$$

Poisson equation

- ▶ Newtonian approximation (no relativity)
- ho(t,r) density, V(t,r) velocity, $\Phi(t,r)$ gravitational potential

The Euler-Poisson equations

$$rac{\partial
ho}{\partial t} +
abla \cdot (
ho V) = 0$$

mass conservation

$$rac{\partial \, oldsymbol{V}}{\partial t} + (\, oldsymbol{V} \cdot
abla) \, oldsymbol{V} = -
abla \Phi$$

Euler equation

$$abla^2 \Phi = 4\pi G
ho$$

Poisson equation

- Newtonian approximation (no relativity)
- ho(t,r) density, V(t,r) velocity, $\Phi(t,r)$ gravitational potential
- ightharpoonup Hubble expansion: $r=a(t)x, \quad V(t,r)=\dot{a}x=rac{\dot{a}}{a}r$:

$$ho = 3/(8\pi G a^3), \quad
abla \Phi = -rac{\ddot{a}}{a}r, \quad -3rac{\ddot{a}}{a} = rac{3}{2a^3} \ \Rightarrow a = (3t/2)^{2/3}$$

The Euler-Poisson equations: comoving coordinates

$$ho = rac{3}{8\pi G a^3}(1+\delta), \hspace{0.5cm} V = rac{\dot{a}}{a}r + av, \hspace{0.5cm}
abla \Phi = -rac{\ddot{a}}{a}r + a
abla_x \phi.$$

$$rac{\partial \delta}{\partial t} +
abla_x \cdot ((1+\delta)v) = 0$$

$$rac{\partial v}{\partial t} + (v\cdot
abla_x)v = -2rac{\dot{a}}{a}v -
abla_x\phi$$

$$abla^2_x\phi=rac{3}{2a^3}\delta$$

The Euler-Poisson equations: comoving coordinates

$$ho=rac{3}{8\pi\,Ga^3}(1+\delta), \quad V=rac{\dot{a}}{a}r+av, \quad
abla\Phi=-rac{\ddot{a}}{a}r+a
abla_x\phi$$

$$rac{\partial \delta}{\partial t} +
abla_x \cdot ((1+\delta)v) = 0$$

$$rac{\partial v}{\partial t} + (v\cdot
abla_x)v = -2rac{\dot{a}}{a}v -
abla_x\phi$$

$$abla_x^2 \phi = rac{3}{2a^3} \delta$$

$$ightharpoonup$$
 Linearization: $rac{\partial \delta}{\partial t} +
abla_x \cdot v = 0, \quad rac{\partial v}{\partial t} = -2rac{\dot{a}}{a}v -
abla_x \phi$

$$rac{\partial^2 \delta}{\partial t^2} + 2rac{\dot{a}}{a}rac{\partial \delta}{\partial t} - rac{3}{2a^3}\delta = 0 \quad \Rightarrow \quad \delta \sim t^{2/3} \sim a \,\, ext{or} \,\, \delta \sim t^{-1} \sim a^{-3/2}$$

The Euler-Poisson equations: "convenient" variables

ightharpoonup rescale velocity $v=\dot{a}\,u$, potential $\phi=rac{3\dot{a}^2}{2a}\psi$

$$rac{\partial \delta}{\partial a} +
abla_x ((1+\delta)u) = 0$$

$$rac{\partial u}{\partial a} + (u\cdot
abla_x)u = -rac{3}{2a}(u +
abla_x\psi)$$

$$abla_x^2 \psi = rac{\delta}{a}$$

The Euler-Poisson equations: "convenient" variables

ightharpoonup rescale velocity $v=\dot{a}u$, potential $\phi=rac{3\dot{a}^2}{2a}\psi$

$$rac{\partial \delta}{\partial a} +
abla_x ((1+\delta)u) = 0$$

$$rac{\partial u}{\partial a} + (u \cdot
abla_x) u = -rac{3}{2a} (u +
abla_x \psi)$$

$$abla_x^2 \psi = rac{\delta}{a}$$

 \triangleright "slaving" as $a \rightarrow 0$:

 $\psi(0,x)$ finite, $\delta o 0$, $u o -
abla_x \psi(0,x)$ and stays potential

The Euler-Poisson equations: Lagrangian variables

$$egin{aligned} ar{x} &= x(a,q), & u = \partial x/\partial a, & \partial_a + u
abla_x &= D_a, \ 1 + \delta &= \left| \partial x/\partial q
ight|^{-1} \end{aligned}$$

$$D_a^2 x = -rac{3}{2a}(D_a x +
abla_x \psi),$$

$$abla_x^2 \psi = rac{1}{a} \left(\left| rac{\partial x}{\partial q}
ight|^{-1} - 1
ight)$$

The Euler-Poisson equations: Lagrangian variables

$$egin{aligned} ar{x} &= x(a,q), & u = \partial x/\partial a, & \partial_a + u
abla_x &= D_a, \ 1 + \delta &= \left| \partial x/\partial q
ight|^{-1} \end{aligned}$$

$$D_a^2 x = -rac{3}{2a}(D_a x +
abla_x \psi),$$

$$abla_x^2 \psi = rac{1}{a} \left(\left| rac{\partial x}{\partial q}
ight|^{-1} - 1
ight)$$

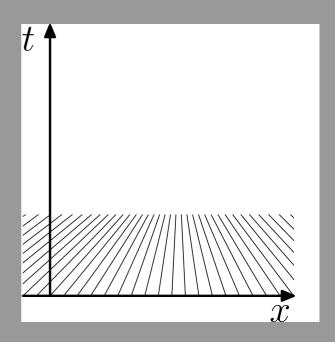
ightharpoonup Zeldovich approximation $D_a^2x=0$, or in Eulerian variables

$$rac{\partial \delta}{\partial a} +
abla_x \cdot ((1+\delta)u) = 0 \qquad rac{\partial u}{\partial a} + (u \cdot
abla_x)u = 0$$

- ightharpoonup x(a,q) = q + au(q)
- exact in dimension one

Crossing of trajectories

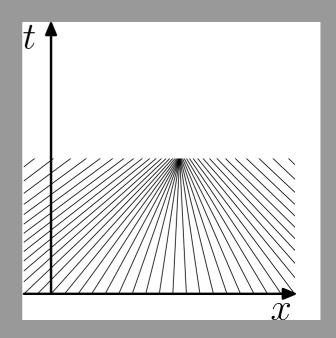
$$rac{\partial u}{\partial t} + (u\cdot
abla) u = rac{\mathrm{d}\,u}{\mathrm{d}\,t} = 0$$
 or $u = \mathrm{const}$ (ballistic motion)



Crossing of trajectories

$$rac{\partial u}{\partial t} + (u \cdot
abla) u = rac{\mathrm{d} u}{\mathrm{d} t} = 0$$

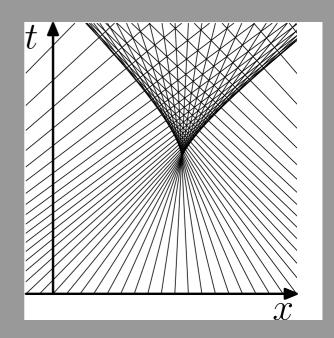
or u = const (ballistic motion)



Crossing of trajectories

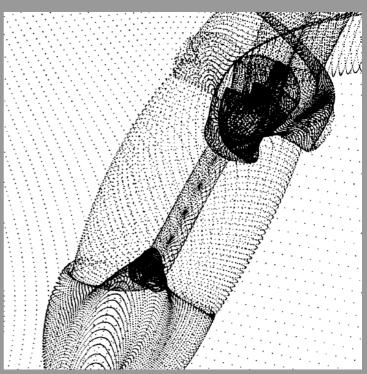
$$rac{\partial u}{\partial t} + (u \cdot
abla) u = rac{\mathrm{d} u}{\mathrm{d} t} = 0$$

or $u = \mathrm{const}$ (ballistic motion)



Inner structure of mass concentrations (d=2)

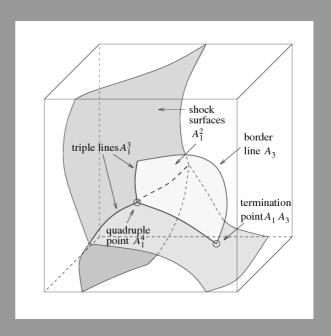


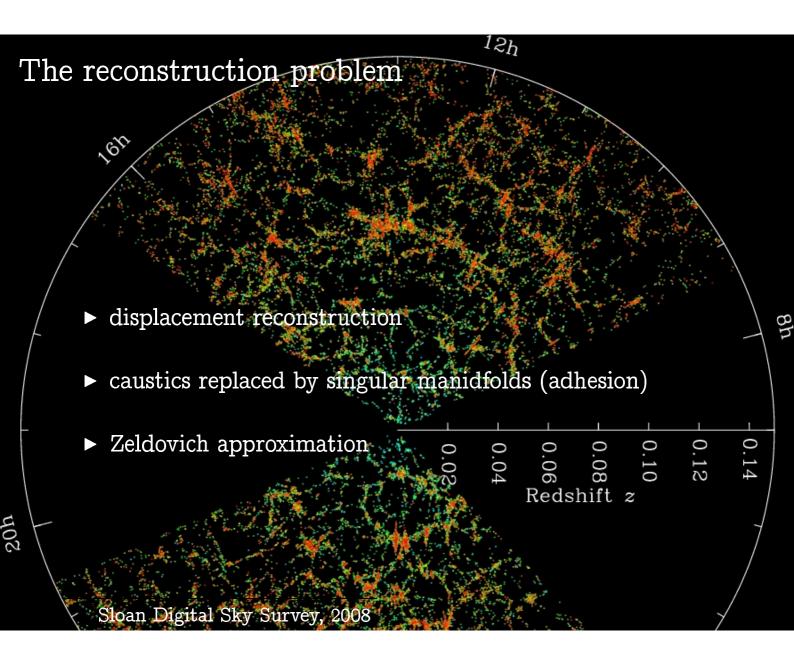


A.L. Melott & S. Shandarin, *Astrophys. J* (1989) doi:10.1086/167681

The adhesion model

$$egin{aligned} rac{\partial \delta}{\partial a} +
abla_x \cdot ((1+\delta)u) &= 0 \ \ rac{\partial u}{\partial a} + (u \cdot
abla_x)u &= \epsilon
abla_x^2 u, \quad \epsilon o 0 \end{aligned}$$





MAK (Monge, Ampère, Kantorovich) reconstruction

- $ightharpoonup x(a,q)=q+au(0,q)=q-a
 abla_q\psi(0,q)$
- $\triangleright x(a, q)$ gradient (of convex potential for small a)
- ho x(a,q) maps uniform ho_0 to highly non-uniform ho(a,x)

MAK (Monge, Ampère, Kantorovich) reconstruction

- $ightharpoonup x(a,q) = q + au(0,q) = q a \nabla_q \psi(0,q)$
- $\triangleright x(a, q)$ gradient (of convex potential for small a)
- $\triangleright x(a,q)$ maps uniform ρ_0 to highly non-uniform $\rho(a,x)$

Theorem (Y. Brenier, circa 1990)

The unique solution of

$$I=\int |x(a,q)\!-\!q|^2\,
ho_0 \mathrm{d}q = \int |x\!-\!q(a,x)|^2 (1\!+\!\delta(a,x)) \mathrm{d}x o \min$$

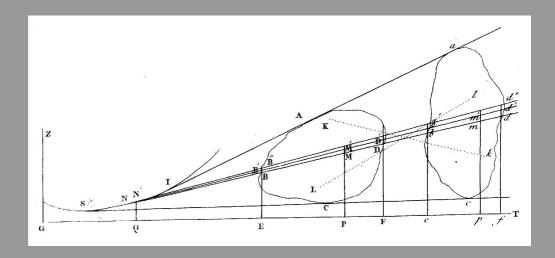
under conditions $ho_0 \, \mathrm{d} \, q = (1 + \delta(a,x)) \, \mathrm{d} x$ is gradient of a convex potential.

Monge's mass transportation problem



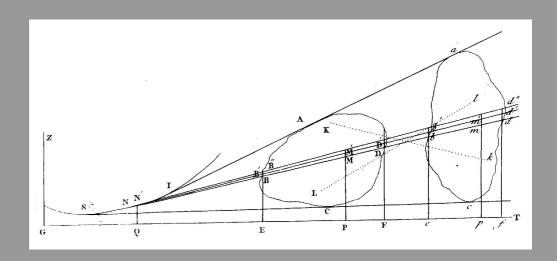
Il n'est pas indifférent que telle molécule de déblai soit transportée dans tel ou tel autre endroit de remblai, mais qu'il y a une certaine distribution à faire des molécules du premier dans le second, d'après laquelle la somme de ces produits sera la moindre possible, et le prix du transport total sera un minimum

Monge's mass transportation problem



Il n'est pas indifférent que telle molécule de déblai soit transportée dans tel ou tel autre endroit de remblai, mais qu'il y a une certaine distribution à faire des molécules du premier dans le second, d'après laquelle la somme de ces produits sera la moindre possible, et le prix du transport total sera un minimum

Monge's mass transportation problem



For given $\delta(a, x)$ minimize

$$I=\int\left|x(a,q)-q
ight|
ho_0\,\mathrm{d}q=\int\left|x-q(a,x)
ight|(1+\delta(a,x))\,\mathrm{d}x$$

under conditions $ho_0\,\mathrm{d}\,q=(1+\delta(a,x))\,\mathrm{d}x$

The numerical least-squares method (MAK)

- > observed density: galaxy catalogue $\sum_i m_i \, \delta(x-x_i)$
- ightharpoonup initial density: uniform grid $\sum_{j}\mu\,\delta(q-q_{j})$
- ► Assignment Problem: minimize

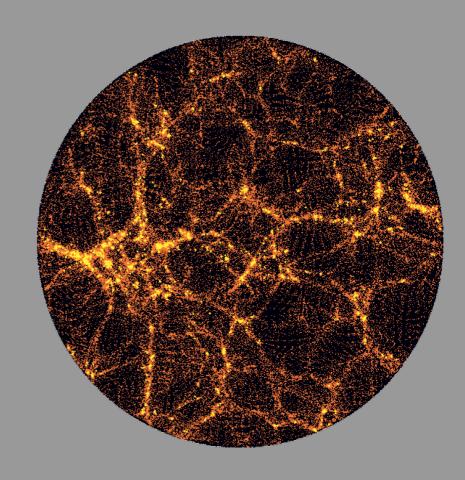
$$rac{1}{2}\sum_{i,j} \gamma_{ij} \, |x_i-q_j|^2$$

under conditions $\gamma_{ij} \geq 0$, $\sum_{j} \gamma_{ij} = m_i$, $\sum_{i} \gamma_{ij} = \mu$

- U. Frisch, S. Matarrese, R. Mohayaee, A.Sobolevski, *Nature* 417 (2002) 260–262
- Y. Brenier, U. Frisch, M. Hénon, G. Loeper, S. Matarrese, R. Mohayaee, A. Sobolevskiĭ, MNRAS 346 (2003) 501-524

Testing the MAK reconstruction

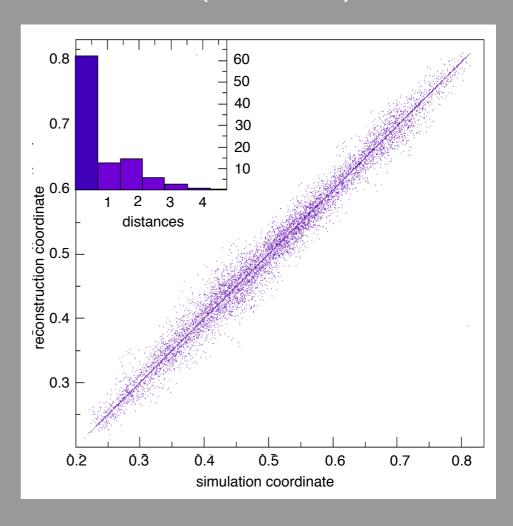
- $N = 128^3$ particles
- > 200 × 200 × 200 Mpc
- periodic boundary conditions
- inscribed sphere contains 17178 particles from a subgrid of 32³ nodes



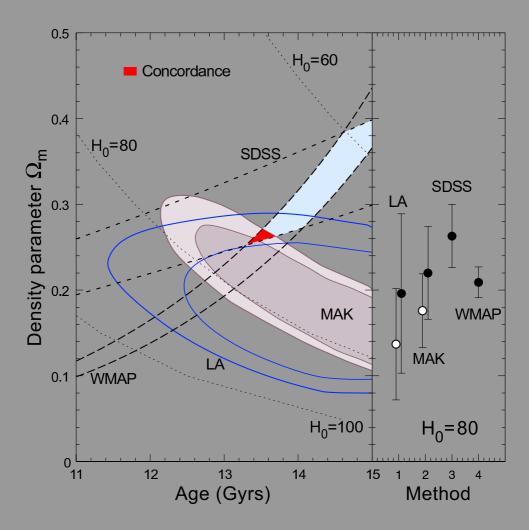
Testing the MAK reconstruction (continued)

"quasi-periodic projection":

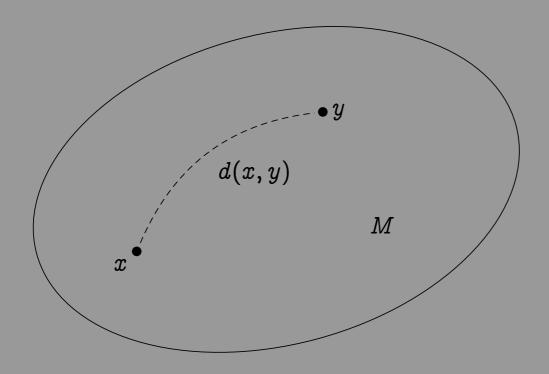
$$ilde{q} = rac{q_1 + \sqrt{2}q_2 + \sqrt{3}q_3}{1 + \sqrt{2} + \sqrt{3}}$$



MAK reconstruction for real cosmic data

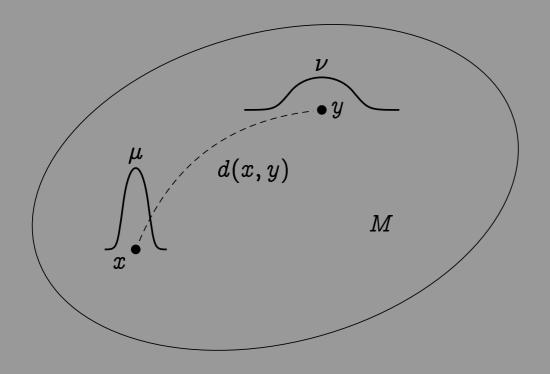


Probability measures as points of geodesic space



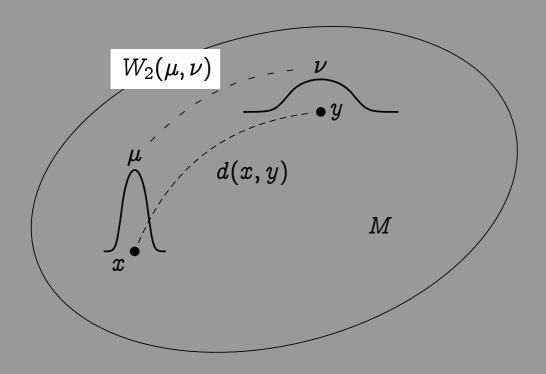
M locally compact geodesic space $\mathcal{P}(M)$ space of probability measures on M

Probability measures as points of geodesic space



M locally compact geodesic space $\mathcal{P}(M)$ space of probability measures on M

Probability measures as points of geodesic space



M locally compact geodesic space $\mathcal{P}(M)$ space of probability measures on M

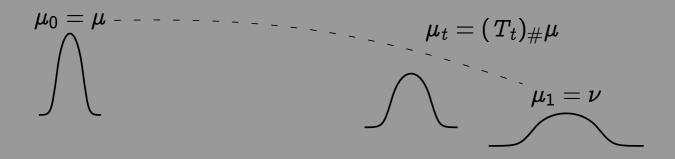
Wasserstein distance $W_2(\mu, \nu)$

Let
$$M \subset \mathbf{R}^d$$
, $d(x,y) = |x-y|$

$$(W_2(\mu,
u))^2 = \inf_{egin{array}{c} \gamma \in \mathcal{P}(M imes M) \ \mu &
u \end{array}} \int |x-y|^2 \, \mathrm{d}\gamma(x,y)$$

Infimum is attained at transport plan $\gamma^* = (\mathrm{id}, T^*)_{\#} \mu$ where $T_{\#}^* \mu = \nu$ and $T = \nabla \Phi$ with Φ convex [?]

Geodesics in $\mathcal{P}(M)$: Displacement interpolation

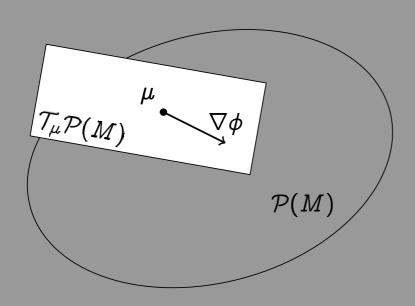


$$T_t \colon \quad x \mapsto (1-t)x + t \; T^*x \ = x + t(T^*x - x)$$

Curl-free velocity field:

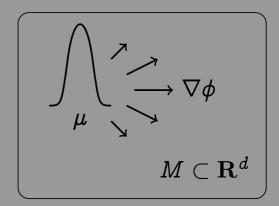
$$T^*x - x =
abla (\Phi(x) - rac{|x|^2}{2})n =:
abla \phi(x)$$

Formal Riemannian structure of $\mathcal{P}(M)$



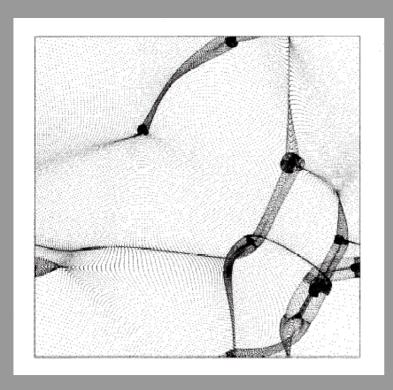
$$||
abla \phi||^2_{\mathcal{T}_{\mu}\mathcal{P}(M)} = \int_M |
abla \phi(x)|^2 \,\mathrm{d}\mu$$

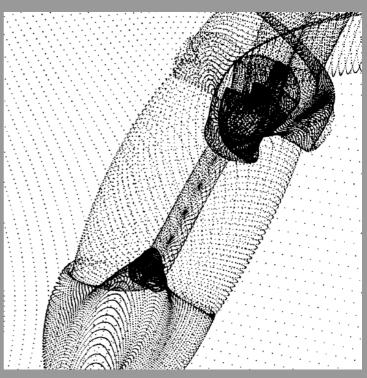
 $\mathcal{T}_{\mu}\mathcal{P}(M)$ is formed by all curl-free vector fields $\nabla \phi$ on M



[?]

Beyond adhesion approximation...





A.L. Melott & S. Shandarin, *Astrophys. J.* (1989) doi:10.1086/167681

The Vlassov–Poisson system

ightharpoonup f(a, x, u) distribution function in (x, u) space

$$rac{\partial f}{\partial a} + u \cdot
abla_x f - rac{3}{2a} (u +
abla_x \psi) \cdot
abla_u f = 0,$$

$$abla^2_x\psi=rac{\delta}{a}$$
 ,

$$1+\delta(a,x)=(ma^2\dot{a})^3\int f\,\mathrm{d}u$$

ightharpoonup monokinetic Ansatz: $f=
ho(a,x)\,\delta(u-u(a,x));$ becomes "multikinetic" in caustics

