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Perron-Frobenius theorem

Oskar Perron (1907), Georg Frobenius (1912).

Let 4 > 0 be a matrix n x n.

Suppose 4’ > 0 for some /.

For a vector (x!,...,x"), define |x|= [x!|+...+]x"|.

Theorem. There exist a number a > 0 and a vector x > 0 such that
ax = Ax, |x|= 1.

The pair (x,a) > 0 satisfying the above two equations is unique.

The vector x and the number « are called the Perron-Frobenius eigenvector and
eigenvalue of the matrix A4.



Properties of the eigenvector x and the eigenvalue «.

Theorem (stability). For any non-zero vector y > 0, we have

Aky
A%y

‘ —>
Theorem (optimality). The pair (x,a) is a unique solution to the maximization
problem:

(M) maximize  over all (y, B) > 0 such that

Py < Ay, y= 1.



Stochastic Perron-Frobenius theorem
(QQ,F, P) a probability space;

T : Q - Qits automorphism: a one-to-one mapping such that 7and 7! are
measurable and preserve P;

A(w) a measurable function taking values in the set of nonnegative n x n
matrices.

Define
C(t,0) = A(T"'0)A(T?w).. . A(w), t = 1,2,...

This is a matrix-valued cocycle:
Ct,Pw)C(s,w) = C(t+s,m), t,s > 0.

Assumption:
(C) For all  there is I/(w) such that C(/,w) > O.



Theorem. There exists a measurable vector function x(w) > 0 and a measurable
scalar function a(w) > 0 such that

a(w)x(Tw) = A(w)x(w), x(w)=1 (a.s.). (1)

The pair of functions (a(+),x(+)) > 0 satisfying (1) is unique up to the equivalence
with respect to P.

x(+) and «a(+) are an “eigenvector” and an “eigenvalue” of A(w) w. r. t. the
dynamical system (Q2,F,P, 7).

Remark. Put 4;(w) = A(T"'w) and denote by F, the s-algebra generated by
SRR At—Z(a))a Al‘—l (a))n Al‘(a))

and completed by all events of measure zero. Then x(w) is Fop-measurable and
a(mw) Is Fi-measurable.



Properties of the "eigenvector"” x(w) and the "eigenvalue" a(o).

Theorem (stability). If t - o, then

C(t,T"'w)a

. T o)l - x(w) (a.s.),

where convergence is uniformina > 0, a + 0.

Here,

C(t,T"'w) = A(T'0)A(T?w)... A(T"0w) = Ao(w)A_1(®)...4A_11(®).
Theorem (optimality). The pair (x,a) is a unique solution to the maximization
problem:

(M) maximize Eln  over all (y, ) > 0 such that

B(w)y(Tw) < A(w)y(w), p(w)=1 (a.s.),
y IS Fo-measurable, ( is Fi-measurable.
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Strict positivity is essential: a counterexample

In the deterministic case, any non-negative matrix 4 has a non-negative
eigenvector. The assumption 4/ > 0 for some [ is not needed for the existence.
This is not the case in the stochastic setting.

Example. Suppose that
0
() ( ) )
1 0

where y(w) > 1 is a measurable function. Assume © := 72 is ergodic and there is
no measurable function f(w) > 0 such that

y(@) = p(Tw)f(w) (a.s.).
[For example, let T be the Bernoulli shift associated with a sequence

o=(..,51,5,51,...) of i.i.d. random variables taking values 1 and 2 with
probability 1/2, and y(w) = s¢.] Then the equations

a(w)x(Tw) = A(w)x(w), x(w)=1 (a.s.).
do not have solutions in the class of measurable x(+) > 0 and a(:) > 0.

Compare with: Ochs, G., Oseledets, V.l. (1999) Topological fixed point theorems
do not hold for random dynamical systems, J. Dyn. Diff. Egs. 11, 583—593.



Strategy of proof. Define

 A(o)x
Ao3) = Ty

This is a random mapping of the unit simplex X := {x > 0 : |x|= 1} into itself.
The problem reduces to the analysis of the equation

x(Tw) = lo,x(w)) (a.s.),
where x(w) is a measurable function with values in X.

Existence, uniqueness and stability of a solution in this setting are equivalent to
those in the Perron-Frobenius one.

Define

 Alw)x
SO = ol

The stability of the stochastic P-F eigenvector x(w) is equivalent to:
Jo(o)f-1(@)...[+«(w)y - x(0) (a.s.)
uniformly in y € X [Product means the composition of maps!].

Moreover, the above convergence implies the existence and uniqueness of the
P-F eigenvector (define x(w) as the above limit).

Afo) = A(T ' o).



Hilbert-Birkhoff metric. Let Y denote the (relative) interior of the unit
simplex:Y :=<{y >0 : |y=1}. Forx,y € Y put
_ Xi, Yi
p(x,y) = ln[max Vi m]ax X/ ].
This formula defines a complete metric on Y (the Hilbert-Birkhoff metric), and the
topology induced by p on Y coincides with the Euclidean topology on Y.

Note that

max% = min{r : x < ry}, maxg;—l = min{r : y < rx}.
Any strictly positive matrix A generates a mapping
Ay
) =
0= T

of Y into itself which is (uniformly) contracting in the H-B metric!
This means p(f(x),f(v)) < «kp(x,y) forall x,y € Y, where k < 1.

G. Birkhoff. Extensions of Jentzsch’s theorem. Trans. Amer. Math. Soc. 84
(1957), 219-227.

M.A. Krasnoselskii, E.A. Lifshitz, A.V. Sobolev, Positive linear systems: the
method of positive operators, Berlin, Heldermann, 1989.



Nonlinear generalizations of the Perron-Frobenius theorem
Large literature. Various directions of studies aimed at different applications.

R. M. Solow and P. A. Samuelson (1953). Balanced growth under constant
returns to scale. Econometrica 21 , 412-424.

Survey:

S. Gaubert and J. Gunawardena (2004). The Perron-Frobenius theorem for
homogeneous, monotone functions. Transactions of the American Mathematical
Society 356, 4931-4950.

An important role was played by the following short note, which opened the way
for using the H-B metric in the nonlinear context:

E. Kohlberg (1982). The Perron-Frobenius theorem without additivity. Journal of
Mathematical Economics 10, 299-303.

The stochastic nonlinear version of the P-F theorem obtained in this work
develops Kohlberg’'s considerations (which he used in the deterministic case).



Results in the nonlinear case. \We obtain results for a class of nonlinear
random mappings 4A(w,x) : Q x R’ - R which are analogous to the results on
stochastic Perron-Frobenius eigenvectors and eigenvalues in the linear case.

For two vectors x = (x!,...,x") and y = (3y!,...,y"), we write x < y if x < y and
X * Y.

A mapping 4 : R} - R’ is called monotone if Ax < Ay for any vectors x,y € R’
satisfying x < y. It is called completely monotone if it preserves each of the
relations x < y, x < y and x < y between two vectors x,y € R" (clearly, if 4
preserves the second relation, it preserves the first). A mapping 4 is termed
strictly monotone if the relation x < y implies A(x) < A(y). Consider the (nonlinear)
cocycle

C(t,0) = A(T"'0)A(T?w).. . A(w), t =1,2,...,

[We write for convenience A(w)x = A(w,x), and the product means the
composition of maps.]

Assumptions. The mapping 4(w,x) is measurable in o for each x and it is
completely monotone, homogeneous and continuous in x for each . For almost
all € Q, there is a natural number / (depending on ) such that the mapping
C(/,w) is strictly monotone.



Theorem. There exists a measurable vector function x(w) > 0 and a measurable
scalar function a(w) > 0 such that

a(w)x(Tw) = A(w)x(w), x(w)=1 (a.s.). (%)

The pair of functions (a(+),x(+)) > 0 satisfying (x) is unique up to the equivalence
with respect to P.

Properties:
Theorem (stability). If t - o, then
C(t,T"'w)a
. T o)l - x(w) (a.s.),

where convergence is uniformina > 0, a + 0.
Here, C(t,T"'w) = A(T'0)A(T?w)...A(T"0w) = Ao(®w)A_1(®)...A_11(®).

Theorem (optimality). The pair (x,a) is a unique solution to the maximization
problem:

(M) maximize Eln  over all (y, ) > 0 such that
Plw)y(To) < A(w)y(w), p(o)=1 (a.s.),

y Is Fo-measurable, ( is Fi-measurable.



Concave homogeneous mappings
Let A : R? - R’ be a concave mapping i.e.
A@x+ (1 -0)y) > 04(x) + (1 —0)A(y)
forall x,y € R? and 0 € [0, 1]. Clearly, if A is homogeneous, then A4 is concave if
and only if it is superadditive:
Ax+y) > A(x) + A().
A superadditive mapping 4 : R" — R" preserves the relation > if and only if

(M.1) A(h) > 0 for all & > 0; it preserves the relation> if and only if (M.2) A(h) > 0
for all 2 > 0; and it is strictly monotone if and only if (M.3) A(k) > 0 for all 2 > 0.

Any superadditive mapping is monotone.

Thus, for a concave homogeneous mapping, its complete monotonicity is
equivalent to the validity of (M.1) and (M.2), and its strict monotonicity is
equivalent to (M.3).

If A(x) is linear, i.e., defined by a non-negative matrix 4, then (M.1) means that 4
does not have zero columns. (M.2) holds if and only if A does not have zero rows.
Complete monotonicity means that 4 has no zero rows and columns. Such
mappings are strictly monotone when 4 > 0.



A key role in the proofs is played by the following fact. Let 4 be a mapping
R - R" such that A(x) # 0 for x € Y. Define

_ AWK
fx) = A0 x €Y.

(Recallthat Y =<y > 0: |y=1}.)

Theorem. If A(x) is homogeneous and strictly monotone, then f(x) is contracting
on Y in the H-B metric p, i.e.

p(fx)./(v)) < p(x,y)
for x,y € Y with x + y.

This result is essentially contained in above-mentioned Kohlberg's (1982) paper.

Note that the above contraction property is not uniform. The conventional Banach
contraction principle does not hold. Instead, (a stochastic version of) the following
fact is used.

Theorem. Let Z be a compact space with a metric p and letf : Z - Z be a
mapping satisfying p(f(x),f(y)) < p(x,y) for all x + y. Then f has a unique fixed
point z, and f*(x) - z for each x € Z.



Stochastic contraction principle
(QQ, F, P) probability space;

T : Q - Q automorphism;

X standard Borel space;

Aow,x) : Qx X - Xjointly measurable mapping.

We provide conditions under which the equation
$(Tw) = flw,&(w)) (a.s.)

has a measurable solution £(w).

Define

filw,x) = AT 'w,x) (k=0,+1,%£2,...),

FD(@,x) = fo(@)f1(0)...fr@)(x) (k=0,1,2,...

where the product means the composition of maps.



Assumptions. Let Y be a measurable subset of X equipped with a metric p such
that Y is separable with respect to this metric and the Borel measurable structure
on Y coincides with the measurable structure induced from X. Suppose that
Aw,x) satisfies the following requirements.

(f.1) For each o € Q, the mapping flw,x) transforms Y into itself and is
continuous on Y with respect to the metric p.

(f.2) There is a sequence of F-measurable sets Q) < Q; <...< Q such that
P(Q,) - 1andforeachm = 0,1,2,..., and o € Q,, the following conditions hold:

(a) the set
X" (0) = 1" (0.X)
IS contained in Y and is compact with respect to the metric p;

(b) for all x,y € Y with x = y, we have

p(f (@,x),f"(®,y)) < p(x,p).



Theorem (Stochastic Contraction Principle).

(i) There exists a measurable mapping & : Q - Y for which equation

§(To) = flo,5(w)) (a.s.) (1)
holds and
lim ig)}gp(é(w),fo ()...f4(®)(x)) =0
with probability one.

(i) If n : Q - X is any (not necessarily measurable) solution to (1), thenn = &

(a.s.).

(ili) Let Fy < F be a o-algebra such that the mappings f-«(w,x), k = 0,1,..., of the
space Q x X into X are Fy x X-measurable and Q,, € F, for allm > 0. Then there

exists an Fo-measurable mapping & possessing the properties described in (i)
and (ii).

|. Evstigneev and S. Pirogov (2007) A stochastic contraction principle, Random
Operators and Stochastic Equations, v. 15, 155-162.



An application: analysis of fixed-mix dynamic investment strategies in
stationary asset markets

Consider a financial market with » assets whose prices change in time and
depend on random factors. Randomness is described as follows. There is a
stochastic process ...,s_1,50,51,... With values in a space S. The value of s;
characterizes the “state of the economy” at time r € {0,£1,£2,...}. The vector of
asset prices

p(s) = @i (s,....pI ("), [pi(s") > 0]
attime = 0,1,... depends on the history s’ = (...,s.~1,5;) of the process (s;).

An investment strateqgy (trading strategy) is a sequence of non-negative vector
functions

hi(s') = (hi(s"),...,hi(s"), t=0,1,2,...,

where the component #%(s") of the vector 4,(s") represents the number of units of
asset k in the portfolio h; = h.(s"). The choice of the portfolio may depend on time
and on information about the process (s,): therefore 4, depends on ¢ and s’. We
assume that all the coordinates of /,(s’) are non-negative (short sales are ruled
out).



Fixed-mix investment strategies. Let y,;, £,/ € {1,...,n}, be a (non-random)
matrix satisfying

Yig > 0, Zkzl Yig = 1.

A strategy 4.(s"), t > 0, is called a fixed-mix strateqy associated with the matrix
vy = (yx), or, for short, a y-strategy, if

piht =3 vupihl. 2)

holds for all £, and s’. Clearly any y-strategy is self-financing, i.e. p:h, = p:h:. In
an important special case, y;; does not depend on :
Yii = Yk [Yk > 0, y1+...+y, = 1]. Then (2) reduces to

péchic — ykzp]l:h]l:—l — ykpfhf—la k < {laan}
Jj=1
An investor using a strategy of this kind divides the available wealth p4,;
according to the proportions y,,...,vy, and spends the amount y;p.h,, for
purchasing yp.h.1/p¥ units of asset k.



Currency markets. We examine fixed-mixed strategies, in particular, in the
context of the modelling of currency markets. ConS|der a frictionless market
where n currencies are traded. The exchange rates ¥ = 79(s!) > O fluctuate
randomly in time, depending on the stochastic factors (s,). Here, 77 denotes the
amount of currency k£ which can be purchased by selling one unit of currency ; at
time ¢. Assume the trader divides the amount /., > 0 of currency ;j available at
the beginning of a time period (z — 1,¢] according to the proportions y;; > 0

(Zk vi; = 1) and exchanges ykjh’ll_l into currency k. Then the amount of currency &
obtained at time ¢ will be equal to

hf = Z?’Ay’”f“jhﬁ;—l- (3)
=

By virtue of no-arbitrage considerations, exchange rates in a frictionless market
must satisfy

7 = ghm g
for all k,m and j. This implies 24 1/71{7‘, 7/ = 1. Let us regard currency 1 as a

numeraire and define p¥ = z!*. Then =? = pl/p*, and so (3) can be written

pihi = Z ijpé 1



Stationary markets. \We focus on stationary markets. We say that the market

under consideration is stationary if the stochastic process (s;), t = 0,+1,%2,...,is
stationary, and the price vectors p, do not explicitly depend on r:
pe = p(s’). (4)

In the above model of currency exchange, the counterpart of condition (4) is
7 = T,
which implies (4), when p, is defined by p* = = }*.
Question. Assume that the trader systematically applies the rule of currency
exchange specified by the matrix (y4). How will the portfolio #; behave in the long

run? Will it stabilize in one sense or another, will it grow or will it generally
decrease?



Assumptions. The prices p*(s*) > 0 satisfy
Ellnp*(s')|< oo, k € {1,...,n},

and the process (s;) is stationary and ergodic. Additionally, we impose the
following requirement of non-degeneracy of the price process p(s’):

(A) The vector p(s') = (p'(s"),...,p"(s")) of normalized prices

oy P(s) -
P (sh) = > () jeAl,...,n},

IS not constant a.s. with respect to s’.
Theorem. Foreach k € {1,2,...,n}, the limit

lim L In A

[—00

exists and is strictly positive almost surely. Furthermore, this limit does not
depend on k, and we have

lim L nk* = lim L np, > 0 (a.s.)

[—00 t [—00

Thus /% tends to infinity at an exponential rate! Further, the wealth p,4, of the
investor grows with the same positive exponential rate!



Positive matrix cocycles associated with fixed-mix strategies
Denote by 4, = A(s") = (a¥(s")) the positive random n x n matrix defined by
p'(s)
JAICON
Then a y-strategy (4,) can be represented as
hi(s?) = A(sHAGTY). .. A(sD)ho(s?).

a(s") = yy

The asymptotic behaviour of this strategy is completely determined by the
Perron-Frobenius eigenvalue a(s'):

a(sHh(sh) = A(sHA(s?) (a.s.).
It is proved that
Elna(s') > 0.

M. A. H. Dempster, L.V. Evstigneev and K. R. Schenk-Hoppe, Exponential growth
of fixed-mix strategies in stationary asset markets, Finance and Stochastics,
2003 ,v. 7, 263-2706.



