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Perron-Frobenius theorem

Oskar Perron (1907), Georg Frobenius (1912).

Let A  0 be a matrix n  n.

Suppose A l  0 for some l.

For a vector x1, . . . ,xn, define |x| |x1|. . .|xn|.

Theorem. There exist a number   0 and a vector x  0 such that

x  Ax, |x| 1.

The pair x,  0 satisfying the above two equations is unique.

The vector x and the number  are called the Perron-Frobenius eigenvector and
eigenvalue of the matrix A.



Properties of the eigenvector x and the eigenvalue .

Theorem (stability). For any non-zero vector y  0, we have

Aky
|Aky|

 x.

Theorem (optimality). The pair x, is a unique solution to the maximization
problem:

(M) maximize  over all y,  0 such that

y  Ay, |y| 1.



Stochastic Perron-Frobenius theorem

, F,P a probability space;

T :    its automorphism: a one-to-one mapping such that T and T1 are
measurable and preserve P;

A a measurable function taking values in the set of nonnegative n  n
matrices.

Define
Ct,  ATt1ATt2. . .A, t  1,2, . . .

This is a matrix-valued cocycle:

Ct,TsCs,  Ct  s,, t, s  0.

Assumption:
(C) For all  there is l such that Cl,  0.



Theorem. There exists a measurable vector function x  0 and a measurable
scalar function   0 such that

xT  Ax, |x| 1 a. s. . (1)

The pair of functions ,x  0 satisfying (1) is unique up to the equivalence
with respect to P.

x and  are an “eigenvector” and an “eigenvalue” of A w. r. t. the
dynamical system , F,P,T.

Remark. Put A t  ATt1 and denote by Ft the -algebra generated by

. . . , A t2, A t1, A t

and completed by all events of measure zero. Then x is F0-measurable and
 is F1-measurable.



Properties of the "eigenvector" x and the "eigenvalue" .

Theorem (stability). If t  , then

Ct,Tta
|Ct,Tta|  x (a.s.),

where convergence is uniform in a  0, a  0.
Here,

Ct,Tt  AT1AT2. . .ATt  A0A1. . .At1.
Theorem (optimality). The pair x, is a unique solution to the maximization
problem:

(M) maximize E ln over all y,  0 such that

yT  Ay, |y| 1 (a.s.),

y is F0-measurable,  is F1-measurable.



Some references

I. Evstigneev (1974) Positive matrix-valued cocycles over dynamical systems.
Uspekhi Matem. Nauk (Russian Mathematical Surveys) 29: 219–220. (In
Russian.)

L. Arnold, V. Gundlach, L. Demetrius (1994) Evolutionary formalism for products
of positive random matrices. Annals of Applied Probability 4: 859–901.

Y. Kifer (1996) Perron-Frobenius theorem, large deviations, and random
perturbations in random environments. Mathematische Zeitschrift 222: 677-698.

I. Evstigneev and S. Pirogov (2010) Stochastic nonlinear Perron-Frobenius
theorem, Positivity, v. 14, 43-57.

E. Babaei, I. V. Evstigneev, and S. A. Pirogov, Stochastic fixed points and
nonlinear Perron-Frobenius theorem, Proceedings of the American Mathematical
Society, 2018, forthcoming. [Extension from R

n random cones X.]



Strict positivity is essential: a counterexample
In the deterministic case, any non-negative matrix A has a non-negative
eigenvector. The assumption A l  0 for some l is not needed for the existence.
This is not the case in the stochastic setting.
Example. Suppose that

A 
0 

1 0
,

where   1 is a measurable function. Assume  : T2 is ergodic and there is
no measurable function   0 such that

  T (a.s.).
[For example, let T be the Bernoulli shift associated with a sequence
  . . . , s1, s0, s1, . . .  of i.i.d. random variables taking values 1 and 2 with
probability 1/2, and   s0.] Then the equations

xT  Ax, |x| 1 (a.s.).
do not have solutions in the class of measurable x  0 and   0.
Compare with: Ochs, G., Oseledets, V.I. (1999) Topological fixed point theorems
do not hold for random dynamical systems, J. Dyn. Diff. Eqs. 11, 583–593.



Strategy of proof. Define

f,x  Ax
|Ax| .

This is a random mapping of the unit simplex X : x  0 : |x| 1 into itself.
The problem reduces to the analysis of the equation

xT  f,x (a.s.),
where x is a measurable function with values in X.
Existence, uniqueness and stability of a solution in this setting are equivalent to
those in the Perron-Frobenius one.
Define

ft,x :
A tx
|A tx|

, A t  ATt1.

The stability of the stochastic P-F eigenvector x is equivalent to:
f0f1. . . fty  x (a.s.)

uniformly in y  X [Product means the composition of maps!].
Moreover, the above convergence implies the existence and uniqueness of the
P-F eigenvector (define x as the above limit).



Hilbert-Birkhoff metric. Let Y denote the (relative) interior of the unit
simplex:Y : y  0 : |y| 1. For x,y  Y put

x,y  lnmax
i

x i
y i  maxj

y j
x j .

This formula defines a complete metric on Y (the Hilbert-Birkhoff metric), and the
topology induced by  on Y coincides with the Euclidean topology on Y.
Note that

max
i

x i
y i  minr : x  ry, max

i

y i
x i  minr : y  rx.

Any strictly positive matrix A generates a mapping

fy : Ay
|Ay|

of Y into itself which is (uniformly) contracting in the H-B metric!
This means fx, fy  x,y for all x,y  Y, where   1.
G. Birkhoff. Extensions of Jentzsch’s theorem. Trans. Amer. Math. Soc. 84
(1957), 219-227.
M.A. Krasnoselskii, E.A. Lifshitz, A.V. Sobolev, Positive linear systems: the
method of positive operators, Berlin, Heldermann, 1989.



Nonlinear generalizations of the Perron-Frobenius theorem

Large literature. Various directions of studies aimed at different applications.

R. M. Solow and P. A. Samuelson (1953). Balanced growth under constant
returns to scale. Econometrica 21 , 412-424.

Survey:
S. Gaubert and J. Gunawardena (2004). The Perron-Frobenius theorem for
homogeneous, monotone functions. Transactions of the American Mathematical
Society 356, 4931-4950.

An important role was played by the following short note, which opened the way
for using the H-B metric in the nonlinear context:

E. Kohlberg (1982). The Perron-Frobenius theorem without additivity. Journal of
Mathematical Economics 10, 299-303.

The stochastic nonlinear version of the P-F theorem obtained in this work
develops Kohlberg’s considerations (which he used in the deterministic case).



Results in the nonlinear case. We obtain results for a class of nonlinear
random mappings A,x :   Rn  Rn which are analogous to the results on
stochastic Perron-Frobenius eigenvectors and eigenvalues in the linear case.
For two vectors x  x1, . . . ,xn and y  y1, . . . ,yn, we write x  y if x  y and
x  y.
A mapping A : Rn  Rn is called monotone if Ax  Ay for any vectors x,y  Rn
satisfying x  y. It is called completely monotone if it preserves each of the
relations x  y, x  y and x  y between two vectors x,y  Rn (clearly, if A
preserves the second relation, it preserves the first). A mapping A is termed
strictly monotone if the relation x  y implies Ax  Ay. Consider the (nonlinear)
cocycle

Ct,  ATt1ATt2. . .A, t  1,2, . . . ,
[We write for convenience Ax  A,x, and the product means the
composition of maps.]

Assumptions. The mapping A,x is measurable in  for each x and it is
completely monotone, homogeneous and continuous in x for each . For almost
all   , there is a natural number l (depending on ) such that the mapping
Cl, is strictly monotone.



Theorem. There exists a measurable vector function x  0 and a measurable
scalar function   0 such that

xT  Ax, |x| 1 a. s. . 
The pair of functions ,x  0 satisfying () is unique up to the equivalence
with respect to P.
Properties:
Theorem (stability). If t  , then

Ct,Tta
|Ct,Tta|  x (a.s.),

where convergence is uniform in a  0, a  0.
Here, Ct,Tt  AT1AT2. . .ATt  A0A1. . .At1.
Theorem (optimality). The pair x, is a unique solution to the maximization
problem:
(M) maximize E ln over all y,  0 such that

yT  Ay, |y| 1 (a.s.),

y is F0-measurable,  is F1-measurable.



Concave homogeneous mappings
Let A : Rn  Rn be a concave mapping i.e.

Ax  1  y  Ax  1  Ay
for all x,y  Rn and   0,1. Clearly, if A is homogeneous, then A is concave if
and only if it is superadditive:

Ax  y  Ax  Ay.
A superadditive mapping A : Rn  Rn preserves the relation  if and only if
(M.1) Ah  0 for all h  0; it preserves the relation if and only if (M.2) Ah  0
for all h  0; and it is strictly monotone if and only if (M.3) Ah  0 for all h  0.
Any superadditive mapping is monotone.
Thus, for a concave homogeneous mapping, its complete monotonicity is
equivalent to the validity of (M.1) and (M.2), and its strict monotonicity is
equivalent to (M.3).
If Ax is linear, i.e., defined by a non-negative matrix A, then (M.1) means that A
does not have zero columns. (M.2) holds if and only if A does not have zero rows.
Complete monotonicity means that A has no zero rows and columns. Such
mappings are strictly monotone when A  0.



A key role in the proofs is played by the following fact. Let A be a mapping
Rn  Rn such that Ax  0 for x  Y. Define

fx  Ax
|Ax| , x  Y.

(Recall that Y : y  0 : |y| 1.)
Theorem. If Ax is homogeneous and strictly monotone, then fx is contracting
on Y in the H-B metric , i.e.

fx, fy  x,y
for x,y  Y with x  y.
This result is essentially contained in above-mentioned Kohlberg’s (1982) paper.
Note that the above contraction property is not uniform. The conventional Banach
contraction principle does not hold. Instead, (a stochastic version of) the following
fact is used.
Theorem. Let Z be a compact space with a metric  and let f : Z  Z be a
mapping satisfying fx, fy  x,y for all x  y. Then f has a unique fixed
point z, and fkx  z for each x  Z.



Stochastic contraction principle
, F,P probability space;

T :    automorphism;

X standard Borel space;

f,x :   X  X jointly measurable mapping.

We provide conditions under which the equation

T  f, (a.s.)

has a measurable solution .

Define

fk,x : fTk1,x k  0,1,2, . . . ,

fk,x : f0f1. . . fkx k  0,1,2, . . . ,

where the product means the composition of maps.



Assumptions. Let Y be a measurable subset of X equipped with a metric  such
that Y is separable with respect to this metric and the Borel measurable structure
on Y coincides with the measurable structure induced from X. Suppose that
f,x satisfies the following requirements.

(f.1) For each   , the mapping f,x transforms Y into itself and is
continuous on Y with respect to the metric .

(f.2) There is a sequence of F-measurable sets 0  1 . . .  such that
Pm  1 and for each m  0,1,2, . . . , and   m the following conditions hold:

(a) the set

Xm : fm,X

is contained in Y and is compact with respect to the metric ;

(b) for all x,y  Y with x  y, we have

fm,x, fm,y  x,y.



Theorem (Stochastic Contraction Principle).

(i) There exists a measurable mapping  :   Y for which equation

T  f, (a.s.) (1)

holds and

lim
k

sup
xX

, f0. . . fkx  0

with probability one.

(ii) If  :   X is any (not necessarily measurable) solution to (1), then   
(a.s.).

(iii) Let F0  F be a -algebra such that the mappings fk,x, k  0,1, . . . , of the
space   X into X are F0  X-measurable and m  F0 for all m  0. Then there
exists an F0-measurable mapping  possessing the properties described in (i)
and (ii).

I. Evstigneev and S. Pirogov (2007) A stochastic contraction principle, Random
Operators and Stochastic Equations, v. 15, 155-162.



An application: analysis of fixed-mix dynamic investment strategies in
stationary asset markets
Consider a financial market with n assets whose prices change in time and
depend on random factors. Randomness is described as follows. There is a
stochastic process . . . , s1, s0, s1, . . . with values in a space S. The value of st
characterizes the “state of the economy” at time t  0,1,2, . . .. The vector of
asset prices

ptst  pt1st, . . . ,ptnst, ptkst  0
at time t  0,1, . . . depends on the history st  . . . , st1, st of the process st.
An investment strategy (trading strategy) is a sequence of non-negative vector
functions

htst  ht1st, . . . ,htnst, t  0,1,2, . . . ,
where the component htkst of the vector htst represents the number of units of
asset k in the portfolio ht  htst. The choice of the portfolio may depend on time
and on information about the process st: therefore ht depends on t and st. We
assume that all the coordinates of htst are non-negative (short sales are ruled
out).



Fixed-mix investment strategies. Let kj, k, j  1, . . . ,n, be a (non-random)
matrix satisfying

kj  0, 
k1

n
kj  1.

A strategy htst, t  0, is called a fixed-mix strategy associated with the matrix
  kj, or, for short, a -strategy, if

ptkhtk j1

n
kjptjht1

j , (2)

holds for all k, t and st. Clearly any -strategy is self-financing, i.e. ptht  ptht1. In
an important special case, kj does not depend on j:
kj  k k  0, 1 . . .n  1. Then (2) reduces to

ptkhtk  k
j1

n

ptjht1
j  kptht1, k  1, . . . ,n.

An investor using a strategy of this kind divides the available wealth ptht1
according to the proportions 1, . . . ,n and spends the amount kptht1 for
purchasing kptht1/ptk units of asset k.



Currency markets. We examine fixed-mixed strategies, in particular, in the
context of the modelling of currency markets. Consider a frictionless market
where n currencies are traded. The exchange rates  tkj   t

kjst  0 fluctuate
randomly in time, depending on the stochastic factors st. Here,  tkj denotes the
amount of currency k which can be purchased by selling one unit of currency j at
time t. Assume the trader divides the amount ht1

j  0 of currency j available at
the beginning of a time period t  1, t according to the proportions kj  0
(k kj  1) and exchanges kjht1

j into currency k. Then the amount of currency k
obtained at time t will be equal to

htk 
j1

n

kj  t
kj ht1

j . (3)

By virtue of no-arbitrage considerations, exchange rates in a frictionless market
must satisfy

 t
kj   tkm  t

mj

for all k,m and j. This implies  tkj  1/ tjk,  tjj  1. Let us regard currency 1 as a
numeraire and define ptk   t1k. Then  tkj  ptj/ptk, and so (3) can be written

ptkhtk j1

n
kjptjht1

j .



Stationary markets. We focus on stationary markets. We say that the market
under consideration is stationary if the stochastic process st, t  0,1,2, . . . , is
stationary, and the price vectors pt do not explicitly depend on t:

pt  pst. (4)
In the above model of currency exchange, the counterpart of condition (4) is

 t
kj  kjst,

which implies (4), when pt is defined by ptk   t1k.
Question. Assume that the trader systematically applies the rule of currency
exchange specified by the matrix kj. How will the portfolio ht behave in the long
run? Will it stabilize in one sense or another, will it grow or will it generally
decrease?



Assumptions. The prices pkst  0 satisfy
E|lnpkst| , k  1, . . . ,n,

and the process st is stationary and ergodic. Additionally, we impose the
following requirement of non-degeneracy of the price process pst:
(A) The vector pst  p 1st, . . . ,p nst of normalized prices

p jst : pjst
m p

mst
, j  1, . . . ,n,

is not constant a.s. with respect to st.
Theorem. For each k  1,2, . . . ,n, the limit

lim
t

1
t lnht

k

exists and is strictly positive almost surely. Furthermore, this limit does not
depend on k, and we have

lim
t

1
t lnht

k  lim
t

1
t lnptht  0 (a.s.)

Thus htk tends to infinity at an exponential rate! Further, the wealth ptht of the
investor grows with the same positive exponential rate!



Positive matrix cocycles associated with fixed-mix strategies
Denote by A t  Ast  akjst the positive random n  n matrix defined by

akjst  kj
pjst
pkst

.

Then a -strategy ht can be represented as
htst  AstAst1. . .As1h0s0.

The asymptotic behaviour of this strategy is completely determined by the
Perron-Frobenius eigenvalue s1:

s1hs1  As1hs0 (a.s.).
It is proved that

E lns1  0.
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