Converse of Smith Theory

Min Yan (Hong Kong University of Science and Technology), mamyan@ust.hk

In 1942, P. A. Smith [3] showed that the fixed point of a p-group action on a finite \mathbb{Z}_p -acyclic complex is still \mathbb{Z}_p -acyclic. In 1971, Lowell Jones studied the converse problem and showed that any \mathbb{Z}_p -acyclic finite CW-complex is the fixed point of a \mathbb{Z}_p -action on a finite contractible CW-complex. In 1974, Robert Oliver [2] extended Jones' work to the problem that, for a given finite group G and a finite CW-complex F, whether F is the fixed point of a (semi-free or general) action of G on a finite contractible CW-complex.

We study the following problem. Suppose G is a finite group, and $f: F \to Y$ is a map between finite CW-complexes. Is it possible to extend F to a finite G-CW complex X satisfying $X^G = F$, and extend f to a G-map $g: X \to Y$ (G acts trivially on Y), such that g is a homotopy equivalence after forgetting the G-action? The work of Jones and Oliver can be regarded as the special case that Y is a point.

In case of general G-action, we find that Oliver's theory largely remains true. In case of semi-free G-action, the problem has an obstruction in K_0 , and we calculate some examples.

This is a joint work with Sylvain Cappell of New York University, and Shmuel Weinbeger of University of Chicago.

The work was supported by Hong Kong RGC General Research Fund 16303515 and 16319116.

References

- [1] L. Jones, The converse to the fixed point theorem of P.A. Smith I, Ann. of Math. **94**:1 (1971), 52–68.
- [2] R. Oliver, Fixed-point sets of group actions on finite cyclic complexes, *Comment. Math. Helvetici* **50** (1971), 155–177.
- [3] P. A. Smith, Fixed points of periodic transformations, *Amer. Math. Soc. Coll.* **27** (1942), 350–373.