Betti numbers of real toric manifolds arising from a graph

Seonjeong Park (Sungkyunkwan University), seonjeong1124@gmail.com

For a graph G, a graph cubeahedron \square_G and a graph associahedron \triangle_G are simple convex polytopes which admit projective smooth toric varieties. In this talk, we introduce a graph invariant, called the b-number, which computes the Betti numbers of the real toric manifold corresponding to a graph cubeahedron. The b-number is a counterpart of the notion of a-number, introduced by S. Choi and H. Park, which computes the Betti numbers of the real toric manifold corresponding to a graph associahedron, see [1]. We also show that for a forest G and its line graph L(G), the real toric manifold $X^{\mathbb{R}}(\triangle_G)$ over \triangle_G and the real toric manifold $X^{\mathbb{R}}(\square_{L(G)})$ over $\square_{L(G)}$ have the same Betti numbers. This talk is based on a joint work with B. Park and H. Park.

References

[1] S. Choi and H. Park, A new graph invariant arises in toric topology, J. Math. Soc. Japan 67:2 (2015), 699-720.