On shift of the Lyapunov spectrum for linear stationary control systems in Banach spaces*

Vasilii Zaitsev

Udmurt State University, Izhevsk, Russia verba@udm.ru

Let X and U be Banach spaces. Consider a linear control system

$$\dot{x}(t) = A(t)x(t) + B(t)u(t), \qquad 0 \le t < +\infty, \tag{1}$$

where $x(t) \in X$, $u(t) \in U$, $A(t) \in L(X,X)$, $B(t) \in L(U,X)$, $t \geq 0$; $L(Q_1,Q_2)$ is the Banach space of linear bounded operators $P: Q_1 \to Q_2$. We suppose that $A(\cdot)$ and $B(\cdot)$ are piecewise continuous and, for some $M_1 > 0$, for all $t \geq 0$, the following inequalities hold: $||B(t)|| \leq M_1$ and

$$||A(t)|| \le M_1. \tag{2}$$

Consider the corresponding free system

$$\dot{x}(t) = A(t)x(t), \qquad 0 \le t < +\infty. \tag{3}$$

Denote by Σ_A the (upper) Lyapunov spectrum of system (3) [1, Ch. III, Sect. 4, p. 117]. By (2), we have $\Sigma_A \subset [-M_2, M_2] \subset (-\infty, +\infty)$ for some $M_2 > 0$. In particular, if $X = \mathbb{R}^n$ and $A(t) \equiv A$ then $\Sigma_A = \{\operatorname{Re} \mu_j : j = \overline{1, n}\}$, where μ_j $(j = \overline{1, n})$ are eigenvalues of A [1, p. 117].

Let us construct a linear state feedback control

$$u(t) = K(t)x(t), \qquad 0 \le t < +\infty, \tag{4}$$

where $K(t) \in L(X, U)$ for $t \geq 0$, $K(\cdot)$ is piecewise continuous, and $||K(t)|| \leq M_3$, $t \geq 0$, for some $M_3 > 0$ (we will call such an operator K(t) admissible). The closed-loop system has the form

$$\dot{x}(t) = (A(t) + B(t)K(t))x(t).$$
 (5)

Definition 1. We say that the Lyapunov spectrum of system (5) is arbitrarily shiftable if for any $\lambda \in \mathbb{R}$ there exists an admissible operator K(t) such that $\Sigma_{A+BK} = \Sigma_A + \lambda$.

^{*}Supported by the Russian Foundation for Basic Research (project no. 16-01-00346) and by the Ministry of Education and Science of the Russian Federation in the framework of the basic part (project no. 1.5211.2017/8.9).

Consider a stationary system (1):

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad 0 \le t < +\infty, \tag{6}$$

where $A \in L(X, X)$ and $B \in L(U, X)$.

Definition 2. The control system (6) is said to be *exactly controllable* on [0,T] [2, Ch. 3, p. 51] if for any points $x^0, x^1 \in X$ there exists a control function $\widehat{u} \in L^2([0,T],U)$ such that the solution x(t) of system (6) with $u(t) = \widehat{u}(t)$ with the initial condition $x(0) = x^0$ satisfies the condition $x(T) = x^1$.

System (6) in closed loop with (4) becomes

$$\dot{x}(t) = (A + BK(t))x(t). \tag{7}$$

Theorem. Assume that X is a reflexive Banach space and U is a Hilbert space. Let system (6) be exactly controllable on some [0,T]. Then the Lyapunov spectrum of the closed-loop system (7) is arbitrarily shiftable.

For the case $X = \mathbb{R}^n$, $U = \mathbb{R}^m$, the theorem follows from [3, 4]. For system (6), obvious corollaries on stabilization or destabilization (by means of linear state feedback (4)) follow from the above theorem.

References

- Daleckii Ju.L., Krein M.G. Stability of solutions of differential equations in Banach space. Am. Math. Soc., 1974.
- Curtain R.F., Pritchard A.J. Infinite dimensional linear systems theory. Springer, 1978. (Lect. Notes Control Inf. Sci.; V. 8).
- Makarov E.K., Popova S.N. On the global controllability of central exponents of linear systems // Russ. Math. 1999. V. 43, N 2. P. 56–63.
- Zaitsev V.A. Lyapunov reducibility and stabilization of nonstationary systems with an observer // Diff. Eqns. 2010. V. 46, N 3. P. 437–447.