Employing quantum cryptography for providing Byzantine fault-tolerance

2-nd International workshop "Mathematical Methods in the Problems of Quantum Technologies"

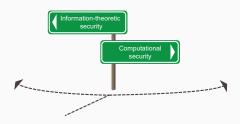
Moscow, 26 Nov 2018

Evgeniy O. Kiktenko^{1,2}

In collaboration with: Andrey A. Koziy,² and Aleksey K. Fedorov²

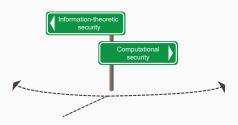


¹ Steklov Mathematical Institute of Russian Academy of Sciences


² Russian Quantum Center

There are two main approaches to protection against "quantum threat"

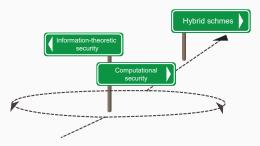
1


There are two main approaches to protection against "quantum threat"

Provided with QKD

- Security proofs are available
- Expensive hardware required
- No public key crypto

There are two main approaches to protection against "quantum threat"


Provided with QKD

- Security proofs are available
- Expensive hardware required
- No public key crypto

Provided with PQC

- No security proofs yet
- No need in new hardware
- Public key crypto is available

There are two main approaches to protection against "quantum threat"

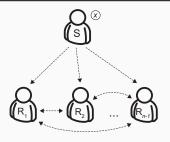
Provided with QKD

- Security proofs are available
- Expensive hardware required
- No public key crypto

Provided with PQC

- No security proofs yet
- No need in new hardware
- Public key crypto is available

Here we consider these two approaches in the framework of providing Byzantine fault-tolerance, and show how they can be combined together in hybrid scheme in order to get benefits from both of them.



[L. Lamport, R. Shostak, and M. Pease, ACM T. Progr. Lang. Sys. 4 382 (1982)]

Required properties

- A1. All honest receivers R_i decide the same output value $x_i = \overline{x}$ (consistency).
- A2. If the sender is honest then all honest receivers R_i agree on sender's value $\overline{x} = x$ (validity).

 Basic assumption: all players are connected with pair-wise authentic channels.

- Basic assumption: all players are connected with pair-wise authentic channels.
- It was proven in [L. Lamport, R. Shostak, and M. Pease, ACM T. Progr. Lang. Sys. 4 382 (1982)] that the protocol can constructed only if

$$n \ge 3m + 1$$
,

where m is maximal number of faulty nodes.

- Basic assumption: all players are connected with pair-wise authentic channels.
- It was proven in [L. Lamport, R. Shostak, and M. Pease, ACM T. Progr. Lang. Sys. 4 382 (1982)] that the protocol can constructed only if

$$n \ge 3m + 1$$
,

where m is maximal number of faulty nodes.

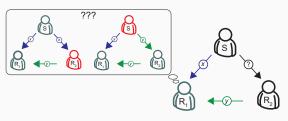
 It is impossible to achieve broadcast even for 3 players where one is cheating.

- Basic assumption: all players are connected with pair-wise authentic channels.
- It was proven in [L. Lamport, R. Shostak, and M. Pease, ACM T. Progr. Lang. Sys. 4 382 (1982)] that the protocol can constructed only if

$$n \ge 3m + 1$$
,

where m is maximal number of faulty nodes.

 It is impossible to achieve broadcast even for 3 players where one is cheating.

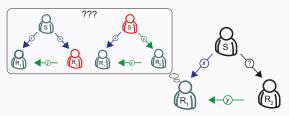


- Basic assumption: all players are connected with pair-wise authentic channels.
- It was proven in [L. Lamport, R. Shostak, and M. Pease, ACM T. Progr. Lang. Sys. 4 382 (1982)] that the protocol can constructed only if

$$n \ge 3m + 1$$
,

where m is maximal number of faulty nodes.

 It is impossible to achieve broadcast even for 3 players where one is cheating.



- Basic assumption: all players are connected with pair-wise authentic channels.
- It was proven in [L. Lamport, R. Shostak, and M. Pease, ACM T. Progr. Lang. Sys. 4 382 (1982)] that the protocol can constructed only if

$$n \ge 3m + 1$$
,

where m is maximal number of faulty nodes.

 It is impossible to achieve broadcast even for 3 players where one is cheating.

• ITS pair-wise authentication is possible with QKD.

[E.O.K., N.O. Pozhar, M.N. Anufriev, A.S. Trushechkin, R.R. Yunusov, Y.V. Kurochkin, A.I. Lvovsky, and A.K. Fedorov, Quantum Sci. Technol. 3, 035004 (2018)]

[E.O.K., N.O. Pozhar, M.N. Anufriev, A.S. Trushechkin, R.R. Yunusov, Y.V. Kurochkin, A.I. Lvovsky, and A.K. Fedorov, Quantum Sci. Technol. 3, 035004 (2018)]

Basic points

 ITS authentication with SU₂ family (Toeplitz hashing) and symmetric keys provided by QKD.

[E.O.K., N.O. Pozhar, M.N. Anufriev, A.S. Trushechkin, R.R. Yunusov, Y.V. Kurochkin, A.I. Lvovsky, and A.K. Fedorov, Quantum Sci. Technol. 3, 035004 (2018)]

- ITS authentication with SU₂ family (Toeplitz hashing) and symmetric keys provided by QKD.
- ITS broadcast protocol based on pair-wise authentic channels only.

[E.O.K., N.O. Pozhar, M.N. Anufriev, A.S. Trushechkin, R.R. Yunusov, Y.V. Kurochkin, A.I. Lvovsky, and A.K. Fedorov, Quantum Sci. Technol. 3, 035004 (2018)]

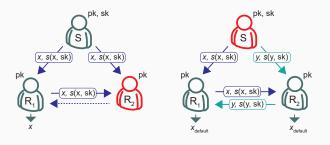
- ITS authentication with SU₂ family (Toeplitz hashing) and symmetric keys provided by QKD.
- ITS broadcast protocol based on pair-wise authentic channels only.
- No signature schemes are used.

[E.O.K., N.O. Pozhar, M.N. Anufriev, A.S. Trushechkin, R.R. Yunusov, Y.V. Kurochkin, A.I. Lvovsky, and A.K. Fedorov, Quantum Sci. Technol. 3, 035004 (2018)]

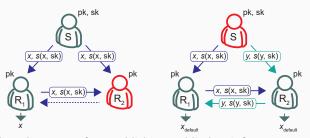
- ITS authentication with SU₂ family (Toeplitz hashing) and symmetric keys provided by QKD.
- ITS broadcast protocol based on pair-wise authentic channels only.
- No signature schemes are used.
- The broadcast protocol is launching for unconfirmed transaction appeared during fixed period of time.

[E.O.K., N.O. Pozhar, M.N. Anufriev, A.S. Trushechkin, R.R. Yunusov, Y.V. Kurochkin, A.I. Lvovsky, and A.K. Fedorov, Quantum Sci. Technol. 3, 035004 (2018)]

- ITS authentication with SU₂ family (Toeplitz hashing) and symmetric keys provided by QKD.
- ITS broadcast protocol based on pair-wise authentic channels only.
- No signature schemes are used.
- The broadcast protocol is launching for unconfirmed transaction appeared during fixed period of time.
- The "block" with newly confirmed transactions is constructed for all users simultaneously.

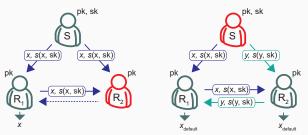

Some technical details

[E.O.K., N.O. Pozhar, M.N. Anufriev, A.S. Trushechkin, R.R. Yunusov, Y.V. Kurochkin, A.I. Lvovsky, and A.K. Fedorov, Quantum Sci. Technol. 3, 035004 (2018)]

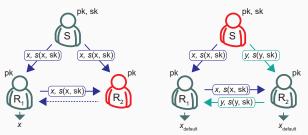

Number of nodes in the network	n = 4
Upper bound on the number of faulty nodes	m = 1
Number of rounds in the broadcast protocol	2
Duration of broadcast protocol	< 10 sec
Time between block generation events	5 min
Authentication hash length	40 bit
Quantum key consumption in the initial broadcast of a	40 bit
transaction	
Quantum key consumption in the broadcast protocol	80 bit
Average quantum key consumption required for a transac-	< 7 bit/s
tion rate of 10 per minute	

The restriction on the number of faulty nodes $(n \ge 3m + 1)$ can be overcomed by using signatures schemes.

The restriction on the number of faulty nodes $(n \ge 3m + 1)$ can be overcomed by using signatures schemes.

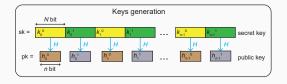

The restriction on the number of faulty nodes $(n \ge 3m + 1)$ can be overcomed by using signatures schemes.

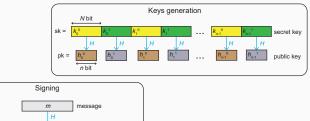
 Pre-broadcast step for establishing public key infrastructure is required.

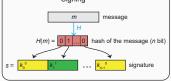

6

The restriction on the number of faulty nodes $(n \ge 3m + 1)$ can be overcomed by using signatures schemes.

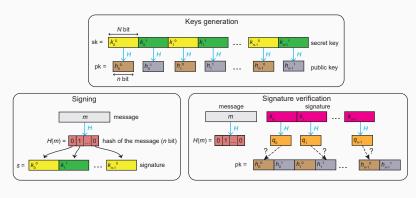
- Pre-broadcast step for establishing public key infrastructure is required.
- Can be established using common or post-quantum CS algorithms or ITS schemes (e.g. see [B. Pfitzmann, M. Waidner Reserch reprot (#908RZ 2882 (#90830)) (1996)]).


The restriction on the number of faulty nodes $(n \ge 3m + 1)$ can be overcomed by using signatures schemes.

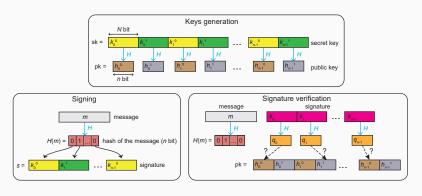

- Pre-broadcast step for establishing public key infrastructure is required.
- Can be established using common or post-quantum CS algorithms or ITS schemes (e.g. see [B. Pfitzmann, M. Waidner Reserch reprot (#908RZ 2882 (#90830)) (1996)]).
- Of particular interest are the post-quantum hash-based signatures.


[L. Lamport, Technical Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)]

[L. Lamport, Technical Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)]



[L. Lamport, Technical Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)]



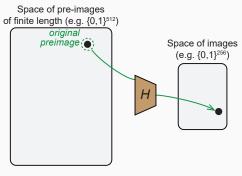
[L. Lamport, Technical Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)]

[L. Lamport, Technical Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)]

Let $H:\{0,1\}^* \to \{0,1\}^n$ be a cryptographic hash function. Consider a following variation of L-OTS.

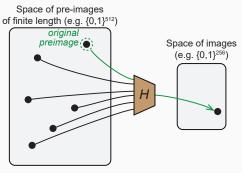
Note: signature includes a half of secret key!

Security of hash-based signatures

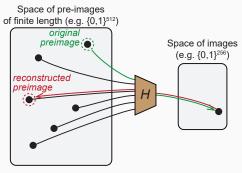

 It is commonly accepted that the best one can do with quantum computer is to employ Grover's algorithm (quadratic speed-up) to break the security of the scheme.

Security of hash-based signatures

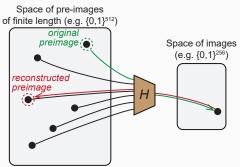
- It is commonly accepted that the best one can do with quantum computer is to employ Grover's algorithm (quadratic speed-up) to break the security of the scheme.
- However, let's imagine that an adversary founded a way how to invert the employed hash function in some clever way OR got an access to some enormous computational resources.


Security of hash-based signatures

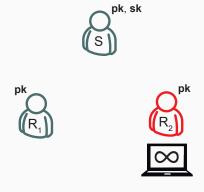
- It is commonly accepted that the best one can do with quantum computer is to employ Grover's algorithm (quadratic speed-up) to break the security of the scheme.
- However, let's imagine that an adversary founded a way how to invert the employed hash function in some clever way OR got an access to some enormous computational resources.

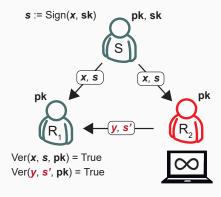

Security of hash-based signatures

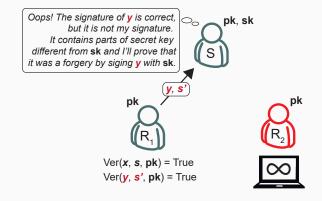
- It is commonly accepted that the best one can do with quantum computer is to employ Grover's algorithm (quadratic speed-up) to break the security of the scheme.
- However, let's imagine that an adversary founded a way how to invert the employed hash function in some clever way OR got an access to some enormous computational resources.

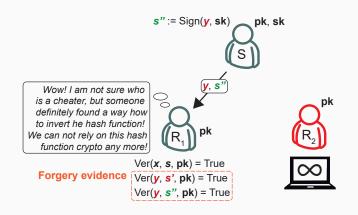

Security of hash-based signatures

- It is commonly accepted that the best one can do with quantum computer is to employ Grover's algorithm (quadratic speed-up) to break the security of the scheme.
- However, let's imagine that an adversary founded a way how to invert the employed hash function in some clever way OR got an access to some enormous computational resources.




Security of hash-based signatures


- It is commonly accepted that the best one can do with quantum computer is to employ Grover's algorithm (quadratic speed-up) to break the security of the scheme.
- However, let's imagine that an adversary founded a way how to invert the employed hash function in some clever way OR got an access to some enormous computational resources.



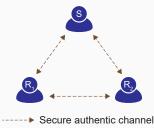
We can use a resulting collision as an evidence of a forgery event.

Broadcast with detection of signature forgery

 Before a start of the protocol each of the players initialize a flag forgery_detected; := 0.

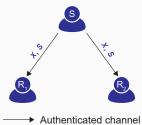
Broadcast with detection of signature forgery

 Before a start of the protocol each of the players initialize a flag forgery_detected; := 0.


Required properties

- B1. If no one has an ability to forge anyones signature, then the standard broadcast Byzantine agreement properties (consistency and validity) hold, and all the honest players end protocol with $forgery_detected_i = 0$.
- B2. If anyone applies the ability to forge signature, then all the honest players end up the protocol with flags $forgery_detected_i = 1$.

Main ideas

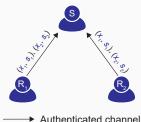

- Using hash-based signatures (PQC) + ITS authentication (provided with QKD);
- 2. Making a check if there is suspicion of a forgery.
- 3. Using ITS (pseudo-)signatures (provided with QKD) for broadcasting the evidence.

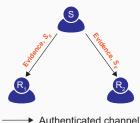
Pre-broadcast stage: establishing PKI and keys for ITS signatures.

- Using hash-based signatures (PQC) + ITS authentication (provided with QKD);
- 2. Making a check if there is suspicion of a forgery.
- 3. Using ITS (pseudo-)signatures (provided with QKD) for broadcasting the evidence.


Step 1: initial sending of the message by Sender.

- Using hash-based signatures (PQC) + ITS authentication (provided with QKD);
- 2. Making a check if there is suspicion of a forgery.
- Using ITS (pseudo-)signatures (provided with QKD) for broadcasting the evidence.


Step 2: exchanging messages by Receivers.


- Using hash-based signatures (PQC) + ITS authentication (provided with QKD);
- 2. Making a check if there is suspicion of a forgery.
- 3. Using ITS (pseudo-)signatures (provided with QKD) for broadcasting the evidence.

Step 3: asking for clarifications (if needed).

- Using hash-based signatures (PQC) + ITS authentication (provided with QKD);
- 2. Making a check if there is suspicion of a forgery.
- 3. Using ITS (pseudo-)signatures (provided with QKD) for broadcasting the evidence.

Step 4: sending the evidence of forgery (if available).

Main ideas

- Using hash-based signatures (PQC) + ITS authentication (provided with QKD);
- 2. Making a check if there is suspicion of a forgery.
- 3. Using ITS (pseudo-)signatures (provided with QKD) for broadcasting the evidence.

Step 5: exchanging the evidence between Receivers (if available).

Authenticated channel

Main ideas

- Using hash-based signatures (PQC) + ITS authentication (provided with QKD);
- 2. Making a check if there is suspicion of a forgery.
- 3. Using ITS (pseudo-)signatures (provided with QKD) for broadcasting the evidence.

Step 5: exchanging the evidence between Receivers (if available).

→ Authenticated channel

Details to appear on arXiv soon!

• There are two ways of thinking about security in post-quantum era: ITS and CS.

- There are two ways of thinking about security in post-quantum era: ITS and CS.
- It's possible to construct ITS distributed ledgers with QKD.

- There are two ways of thinking about security in post-quantum era:
 ITS and CS.
- It's possible to construct ITS distributed ledgers with QKD.
- Features of hash-based post-quantum signatures allows proving event of their forgery.

- There are two ways of thinking about security in post-quantum era:
 ITS and CS.
- It's possible to construct ITS distributed ledgers with QKD.
- Features of hash-based post-quantum signatures allows proving event of their forgery.
- Combining with ITS cryptographic primitives, provided with QKD, allows constructing new type of broadcast protocol with detection of signature forgery (detailed description of the protocol with its security proof to appear on arXiv soon).

- There are two ways of thinking about security in post-quantum era:
 ITS and CS.
- It's possible to construct ITS distributed ledgers with QKD.
- Features of hash-based post-quantum signatures allows proving event of their forgery.
- Combining with ITS cryptographic primitives, provided with QKD, allows constructing new type of broadcast protocol with detection of signature forgery (detailed description of the protocol with its security proof to appear on arXiv soon).
- Open questions:
 - · extending protocol on arbitrary number of players;
 - employing modern hash-based many-time signatures (SPHINCS, XMSS, etc.).

Thank You!

e.kiktenko@rqc.ru

Any questions?

