О новом методе ординального анализа теории множеств Крипке-Платека.

Ф.Н. Пахомов Математический институт им. В.А. Стеклова РАН pakhf@mi.ras.ru

Семинар «Теория доказательств», МИАН 12 ноября 2018

Schmerl formula

The arithmetical Π_n^0 uniform reflection for theory T

$$\mathsf{RFN}_{\Pi_n^0}(T) : (\forall \varphi \in \Pi_n^0)(\mathsf{Prv}_T(\varphi) \to \mathsf{Tr}_{\Pi_n^0}(\varphi)).$$

For recursive ordinals α we define r.e. theories $R_{\Pi_0^0}^{\alpha}(T)$:

$$\mathsf{R}^{\alpha}_{\mathsf{\Pi}^{\mathsf{0}}_{\mathsf{n}}}(T) = T + \{\mathsf{RFN}_{\mathsf{\Pi}^{\mathsf{0}}_{\mathsf{n}}}(\mathsf{R}^{\beta}_{\mathsf{\Pi}^{\mathsf{0}}_{\mathsf{n}}}(T)) \mid \beta < \alpha\}.$$

Formally definition is carried out using Fixed Point Lemma.

EA is a weak fragment of PA proving totality of exponentiation.

Schmerl formula:

$$\mathsf{R}^{\alpha}_{\Pi^0_{n+1}}(\mathsf{EA}) \equiv_{\Pi^0_n} \mathsf{R}^{\omega^{\alpha}}_{\Pi^0_n}(\mathsf{EA}), \text{ for } \alpha > 0.$$

Classifying Π_2^0 consequences of PA in terms of iterated reflection

Ordinal
$$\omega_n = \underbrace{\omega \cdots \omega}_{n \text{ times}}$$
.

$$\begin{split} \mathsf{PA} &\equiv \bigcup_{n \in \mathbb{N}} \mathsf{R}_{\Pi^0_n}(\mathsf{EA}). \\ & \quad \ \ \, \downarrow \\ \mathsf{PA} &\equiv_{\Pi^0_2} \bigcup_{n \in \mathbb{N}} \mathsf{R}^{\omega_n}_{\Pi^0_2}(\mathsf{EA}). \\ & \quad \ \ \, \downarrow \\ \mathsf{PA} &\equiv_{\Pi^0_2} \mathsf{R}^{\varepsilon_0}_{\Pi^0_2}(\mathsf{EA}). \end{split}$$

From reflection to fast-growing functions

 $f_{\alpha}(x)$ is α 'th function from fast-growing hierarchy

For any Δ_0^0 formula $\varphi(x,y)$:

$$\mathsf{R}^{\alpha}_{\mathsf{\Pi}^{\mathbf{0}}_{2}}(\mathsf{E}\mathsf{A}) \vdash \forall x \exists y \ \varphi(x,y)$$

$$\Downarrow$$

$$\mathsf{R}^{\alpha}_{\mathsf{\Pi}^{0}_{2}}(\mathsf{EA}) \vdash \forall x (\exists y < f^{n}_{2+\beta}(x)) \varphi(x,y), \text{ for some } \beta < \alpha \text{ and } n \in \mathbb{N}$$

Hence

$$\mathsf{PA} \vdash \forall x \exists y \; \varphi(x,y)$$

$$\Downarrow$$

$$\mathsf{PA} \vdash \forall x (\exists y < f_\alpha(x)) \varphi(x,y) \text{, for some } \alpha < \varepsilon_0$$

$KP\omega$ vs PA

Axioms of KP are: Extensionality, Pair, Union, Δ_0 -Separation, Δ_0 -Collection, and Foundation. KP ω is KP + Infinity.

Transitive models of KP are known as admissible sets. Analogies between PA and KP ω :

PA	$KP\omega$
N	admissible sets with ω
r.e. sets	Σ_1 classes
recursive functions	Σ_1 functions
recursive ordinal notations	Δ_0 class well-orderings
ω	On
$arepsilon_0$	$arepsilon_{\mathit{On}+1}$
hierarchies of	hierarchies of
recursive functions	Σ_1 functions $\mathit{On} o \mathit{On}$
r.e. theories	class-theories with Σ_1 class of axioms

$\mathsf{KP}_0\omega$

Signature: $x \in y$, $\rho(x)$

Abbreavations:

- ▶ $x \subseteq y \stackrel{\text{def}}{\iff} (\forall z \in y) \ z \in x; \quad \mathsf{Trans}(x) \stackrel{\text{def}}{\iff} (\forall y \in x) \ y \subseteq x;$
- ▶ $x \in On \iff \operatorname{Trans}(x) \land (\forall y \in x)\operatorname{Trans}(y) \land (\forall y \subseteq x)(\exists z \in y)(\forall w \in y) \neg w \in z.$

Axioms:

- 1. $\forall z \ (z \in x \leftrightarrow z \in y) \rightarrow x = y \ (Extensionality);$
- 2. $\exists z \ (x \in z \land y \in z) \ (Pair);$
- 3. $\exists y (\forall z \in x) \ z \subseteq y \ (Union);$
- 4. $\exists y \forall z (z \in y \leftrightarrow z \in x \land \varphi(z))$, where $\varphi(z)$ is a Δ_0 -forumula $(\Delta_0$ -Sep);
- 5. $(\forall x \in x_0) \exists y \ \varphi(x, y) \rightarrow \exists y_0 (\forall x \in x_0) (\exists y \in y_0) \ \varphi(x, y)$, where $\varphi(x, y)$ is a Δ_0 -formula $(\Delta_0$ -Coll);
- 6. $\alpha \in \rho(x) \leftrightarrow (\exists y \in x)(\alpha \in \rho(y) \lor \alpha = \rho(y));$
- 7. $\rho(x) \in On$;
- 8. $\exists M \text{ (Trans}(M) \land (\forall y \in M) \ \rho(y) \in M \land U^{(M)})$, where U is a finite fragment of 1.–7 (Infinity).

Arithmetics in $KP_0\omega$

Since we have rank function and Δ_0 -Sep, any transitive model M satisfies full scheme of Foundation:

$$\forall x((\forall y \in x)\varphi(y) \to \varphi(x)) \to \forall x \varphi(x).$$

In $KP = KP_0 + Foundation$ we could define natural numbers with addition and multiplication.

Thus we have Δ_1 definition of addition and multiplication on naturals in $\mathsf{KP}_0\omega$. Moreover, since $\mathsf{KP}_0\omega$ proves full scheme of Foundation on transitive models, it proves full scheme of induction on naturals. Since we have a transitive model above naturals, interpretation of any first-order arithmetical formula is Δ_1 .

Class-size language in $KP_0\omega$

We work in $KP_0\omega$.

We consider language **L** that is extension of the language of $KP_0\omega$ by constants \hat{x} , for all sets x.

We denote by Π_n , Σ_n the extension of classes Π_n , Σ_n by all the constants \hat{x} .

Formally an L formula is a pair $\langle \varphi, ev \rangle$, where ev is a function with $dom(ev) = n = \{0, \dots, n-1\}$ and φ is a formula of the language of $\mathsf{KP}_0\omega$ with constants c_0, \dots, c_{n-1} .

$$\varphi = \varphi[\hat{x}_0, \dots, \hat{x}_{n-1}/c_0, \dots, c_{n-1}] \rightsquigarrow \langle \varphi, ev \rangle,$$

where $ev(c_i) = x_i$.

Reflection principles for $KP_0\omega$

There are partial truth definitions that satisfy biconditionals:

$$\mathsf{KP}_0\omega \vdash \forall \vec{x}(\varphi(\vec{x}) \leftrightarrow \mathsf{Tr}_{\mathbf{\Pi}_n}(\varphi[\hat{x}/\vec{x}])),$$

where $\varphi(\vec{x})$ is Π_n .

Moreover for $n \geq 1$ the formula Tr_{Π_n} is from the class Π_n .

The idea is to define ${\sf Tr}_{{f \Delta}_0}(arphi)$ as

"there exists a set-size partial truth definition A that satisfies compositional axioms for Δ_0 formulas, covers φ , and assign positive truth value to it."

And then use it to define truth definitons for other classes.

Let T be L theory given by Σ_1 formula defining its class of axioms¹.

$$\mathsf{RFN}_{\Pi_n}(T) : (\forall \varphi \in \Pi_n)(\mathsf{Prv}_T(\varphi) \to \mathsf{Tr}_{\Pi_n}(\varphi)).$$

For $n \ge 1$ the principle RFN_{Π_n}(T) is equivalent to Π_n formula.

 $^{^1\}Sigma_1$ is complexity of defining formula of the class, axioms could be of arbitrary complexity

Iterated Reflection

Let $\Lambda=(D_\Lambda,\prec_\lambda)$ be Δ_0 class-size linear order $\mathsf{KP}_0\omega \vdash \mathsf{LO}(\Lambda).$

For **L** theories T given by Σ_1 -classes of axioms² and $\alpha \in \Lambda$:

$$\mathsf{R}^{\alpha}_{\mathbf{\Pi}_n}(T) \equiv T + \bigcup_{eta \prec_{\Lambda} lpha} \mathsf{RFN}_{\mathbf{\Pi}_n}(\mathsf{R}^{eta}_{\mathbf{\Pi}_n}(T)).$$

Formally, we define Σ_1 -classes of axioms for theories $\mathsf{R}^a_{\Pi_n}(T)$ by a joint arithmetical fixed point.

 $^{^2}$ again, $\pmb{\Sigma}_1$ is complexity of defining formula of the class, axioms could be of arbitrary complexity

Reflexive Induction

Provability predicate $Prv_{T+Tr_{\Sigma_n}}(\varphi)$:

$$(\exists \psi \in \mathbf{\Sigma}_n)(\mathsf{Tr}_{\mathbf{\Sigma}_n}(\psi) \wedge \mathsf{Prv}_{\mathcal{T}}(\psi \to \varphi)).$$

Note that

$$\mathsf{KP}_0\omega \vdash \neg \mathsf{Prv}_{T+\mathsf{Tr}_{\Sigma_n}}(\neg \varphi) \leftrightarrow \mathsf{RFN}_{\Pi_n}(T+\varphi).$$

Theory $KP_0\omega$ is closed under Reflexive Induction Rule

$$\frac{(\forall \alpha \in \Lambda)((\forall \beta \prec_{\Lambda} \alpha) \mathsf{Prv}_{\mathsf{KP}_0\omega + \mathsf{Tr}_{\Sigma_1}}(\varphi(\hat{\beta})) \to \varphi(\alpha))}{(\forall \alpha \in \Lambda)\varphi(\alpha)}$$

Using reflexive induction it is easy to show that $KP_0\omega$ proves usual properties of sequences $R_{\Pi_n}^{\alpha}(T)$:

- ▶ the class of theorems of $R_{\Pi_n}^{\alpha}(T)$ is independent of the choice of the solution of the fixed point-equation on its axiomatization;
- $ightharpoonup \mathsf{R}^{\alpha}_{\Pi_{\alpha}}(T) \supseteq \mathsf{R}^{\beta}_{\Pi_{\alpha}}(T), \text{ for } \alpha \prec_{\Lambda} \beta.$

Foundation and iterated reflection

$$\mathsf{KP}\omega = \mathsf{KP}_0\omega + \mathsf{Foundation} \equiv \bigcup_{n \in \mathbb{N}} \mathsf{R}_{\mathbf{\Pi}_n}^{On+1}(\mathsf{KP}_0\omega).$$

Foundation \Rightarrow iterated reflection:

In KP ω by induction over ordinals α we have

$$\mathsf{RFN}_{\mathbf{\Pi}_n}(\mathsf{KP}_0\omega + \bigcup_{\beta < \alpha} \mathsf{RFN}_{\mathbf{\Pi}_n}(\mathsf{R}_{\mathbf{\Pi}_n}^{\beta}(\mathsf{KP}_0\omega))).$$

To justify the step by induction over naturals we show that true Π_n -axiomatized theory could prove only true Π_n conclusions.

Iterated reflection \Rightarrow foundation:

For any Π_n formula $\varphi(x)$ by reflexive induction theory $KP_0\omega$ proves that for all ordinals α

$$\mathsf{R}^\alpha_{\Pi_{n+3}}(\mathsf{KP}_0\omega) \to (\forall x((\forall y \in x)\varphi(y) \to \varphi(x)) \to \forall x(\rho(x) \leq \hat{\alpha} \to \varphi(x))).$$

Thus

$$\mathsf{R}^{On+1}_{\Pi_{n+3}}(\mathsf{KP}_0\omega) \vdash \forall x((\forall y \in x)\varphi(y) \to \varphi(x)) \to \forall x \varphi(x).$$

Reduction property

For $n \geq 2$ theory $KP_0\omega$ proves that for $T \supseteq KP_0\omega$

$$\mathsf{KP}_0\omega + \mathsf{RFN}_{\Pi_{n+1}}(T) \equiv_{\Pi_n} \mathsf{R}^{\omega}_{\Pi_n}(T).$$

⊒:

For any Π_n sentence φ :

$$\mathsf{KP}_{0}\omega + \mathsf{RFN}_{\mathbf{\Pi}_{n+1}}(T) + \varphi \vdash \mathsf{RFN}_{\mathbf{\Pi}_{n+1}}(T + \varphi) \\ \vdash \mathsf{RFN}_{\mathbf{\Pi}_{n}}(T + \varphi).$$

Proof of: $KP_0\omega + RFN_{\Pi_{n+1}}(T) \supseteq_{\Pi_n} R_{\Pi_n}^{\omega}(T)$

We work in PA and prove the inclusion theories in any finite sublanguage of ${\bf L}$.

We define forcing notion \vdash .

Forcing conditions are Π_{n-1} formulas with free variables

$$\varphi \Vdash A \stackrel{\mathrm{def}}{\iff} \mathsf{R}^{\omega}_{\mathbf{\Pi}_n}(T) + \varphi \vdash A,$$

for atomic **L** formulas *A*.

$$\varphi \Vdash \bot \stackrel{\text{def}}{\iff} \mathsf{R}^{\omega}_{\mathbf{\Pi}_n}(T) + \varphi \vdash \bot.$$

$$\varphi \preceq \psi \stackrel{\text{def}}{\iff} \mathsf{R}^{\omega}_{\mathbf{\Pi}_n}(T) + \psi \vdash \varphi.$$

We expand \vdash to all formulas in a standard manner:

- $ightharpoonup \varphi \Vdash \psi \land \chi \stackrel{\mathrm{def}}{\Longleftrightarrow} \varphi \Vdash \psi \text{ and } \varphi \Vdash \chi;$
- $\blacktriangleright \varphi \Vdash \psi \lor \chi \stackrel{\mathrm{def}}{\Longleftrightarrow} \varphi \Vdash \psi \text{ or } \varphi \Vdash \chi;$
- $\blacktriangleright \ \varphi \Vdash \psi \to \chi \stackrel{\mathrm{def}}{\Longleftrightarrow} \ \text{ for each } \varphi' \succeq \varphi \colon \varphi' \Vdash \psi \text{ implies } \varphi' \Vdash \chi;$
- $ightharpoonup \varphi \Vdash \exists x \ \psi \ \stackrel{\mathrm{def}}{\Longleftrightarrow} \ \ \text{for some variable } y : \varphi \Vdash \psi[y/x];$
- $\blacktriangleright \varphi \Vdash \forall x \; \psi \; \stackrel{\mathrm{def}}{\Longleftrightarrow} \; \; \text{for all variables} \; y \colon \varphi \Vdash \psi [y/x]_{\mathbb{R}^{n-1}} = \mathbb{R}^{n-2} = \mathbb{R}^{n$

Proof of:
$$KP_0\omega + RFN_{\Pi_{n+1}}(T) \supseteq_{\Pi_n} R_{\Pi_n}^{\omega}(T)$$

As usual $\neg \varphi$ is $\varphi \to \bot$.

Negative translation ψ^N is contruted by putting $\neg\neg$ prefix over all atomic formulas, all disjunctions, and all existential quantifiers, e.g. $(\exists x \ \psi')^N$ is $\neg\neg\exists x (\psi')^N$.

For each Π_n formula $\psi(\vec{x})$ in KP₀ ω we could prove that for all vectors of parameters \vec{p} and forcing conditions φ :

$$\varphi \Vdash \psi(\hat{\hat{p}}) \iff \mathsf{R}^{\omega}_{\Pi_n}(T) + \varphi \vdash (\psi(\hat{\hat{p}}))^N.$$

Proof of:
$$KP_0\omega + RFN_{\Pi_{n+1}}(T) \supseteq_{\Pi_n} R_{\Pi_n}^{\omega}(T)$$

We reformulate reflection principle RFN $_{\Pi_{n+1}}(T)$:

$$\forall x(x \in \mathbf{\Pi}_n \wedge \mathsf{Tr}_{\mathbf{\Pi}_n}(x) \to \mathsf{Con}(T + \mathsf{Tr}_{\mathbf{\Pi}_n}(\hat{x}))).$$

We claim $\top \Vdash (\mathsf{RFN}_{\Pi_{n+1}}(T))^N$. Consider arbitrary $\varphi \in \Pi_{n-1}$:

$$\varphi \Vdash (x \in \Pi_n \land \mathsf{Tr}_{\Pi_n}(x))^N \underset{\updownarrow}{\Rightarrow} \varphi \Vdash (\mathsf{Con}(T + \mathsf{Tr}_{\Pi_n}(\hat{x})))^N$$

$$\mathsf{R}^\omega_{\mathbf{\Pi}_n}(T) + \varphi \vdash x \in \mathbf{\Pi}_n \wedge \mathsf{Tr}_{\mathbf{\Pi}_n}(x) \overset{\rightarrow}{\Rightarrow} \mathsf{R}^\omega_{\mathbf{\Pi}_n}(T) + \varphi \vdash \mathsf{Con}(T + \mathsf{Tr}_{\mathbf{\Pi}_n}(\hat{x}))$$

$$\mathsf{R}^n_{\Pi_n}(T) + \varphi \vdash \mathsf{x} \in \Pi_n \land \mathsf{Tr}_{\Pi_n}(\mathsf{x}) \Rightarrow \mathsf{R}^{n+1}_{\Pi_n}(T) + \varphi \vdash \mathsf{Con}(T + \mathsf{Tr}_{\Pi_n}(\hat{\mathsf{x}})).$$

The last implication holds since $R_{\Pi_n}^{n+1}(T) + \varphi \vdash Con(R_{\Pi_n}^n(T) + \varphi)$.

Now by induction on cut-free proofs we show that for all sequents of Π_{n+2} formulas Γ :

$$\vdash \Gamma \Rightarrow \top \Vdash \bigvee \Gamma.$$

Thus for any Π_n formula φ :

$$\mathsf{KP}_0\omega + \mathsf{RFN}_{\Pi_n}(T) \vdash \varphi \Rightarrow \top \Vdash \varphi \Rightarrow \mathsf{R}^\omega_{\Pi_n}(T) \vdash \varphi.$$

Schmerl Formula

The order ω^{Λ} :

- ▶ domain consists of terms $\omega^{\alpha_0} + \ldots + \omega^{\alpha_{m-1}}$, where $\alpha_0 \succeq_{\Lambda} \ldots \succeq_{\Lambda} \alpha_{m-1}$ and $m \geq 1$;
- $\qquad \qquad \omega^{\alpha_0} + \ldots + \omega^{\alpha_{m-1}} \prec_{\omega^{\Lambda}} \omega^{\beta_0} + \ldots + \omega^{\beta_{k-1}} \text{ iff } \langle \alpha_0, \ldots, \alpha_{m-1} \rangle \text{ is } \\ \prec_{\Lambda} \text{-lexicographically less than } \langle \beta_0, \ldots, \beta_{k-1} \rangle;$

By reflexive induction using reduction property we prove Schmerl formula for $n \ge 2$:

$$\mathsf{R}^{\alpha}_{\mathbf{\Pi}_{n+1}}(\mathsf{KP}_0\omega) \equiv \mathsf{R}^{\omega^{\alpha}}_{\mathbf{\Pi}_n}(\mathsf{KP}_0\omega).$$

ε_{On+1}

 ε_{Λ} is the naturally defined order on terms

- **>** 0;
- \triangleright ε_{α} , for $\alpha \in \Lambda$;
- lacksquare $\omega^{t_0}+\ldots+\omega^{t_{m-1}}$, where t_i are terms and $t_0\succeq_{arepsilon_{\Lambda}}\ldots\succeq_{arepsilon_{\Lambda}}t_{m-1}$.

 $\mathsf{KP}_1\omega=\mathsf{KP}_0\omega+\Sigma_1$ -Foundation. It proves totality of ε_X function. Hence in $\mathsf{KP}_1\omega$ we could construct a bijection between ε_{On} and On . Thus we could show that any proper initial fragment of ε_{On+1} is embeddable in ω_n^{On+1} , for some n.

Reformulating $\mathsf{KP}\omega$ in terms of iterated reflection

For any $m \ge 2$:

$$\begin{split} \mathsf{K}\mathsf{P}\omega &\equiv \bigcup_{n \in \mathbb{N}} \mathsf{R}^{\mathit{O}n+1}_{\Pi_n}(\mathsf{K}\mathsf{P}_0\omega) \sqsubseteq \bigcup_{n \in \mathbb{N}} \mathsf{R}^{\omega_n^{\mathit{O}n+1}}_{\Pi_m}(\mathsf{K}\mathsf{P}_0\omega) \sqsubseteq_{\Pi_m} \mathsf{R}^{\varepsilon_{\mathit{O}n+1}}_{\Pi_m}(\mathsf{K}\mathsf{P}_0\omega). \\ \\ \mathsf{R}^{\varepsilon_{\mathit{O}n+1}}_{\Pi_m}(\mathsf{K}\mathsf{P}_0\omega) \sqsubseteq \mathsf{R}^{\varepsilon_{\mathit{O}n+1}}_{\Pi_m}(\mathsf{K}\mathsf{P}_1\omega) \equiv_{\Pi_m} \bigcup_{n \in \mathbb{N}} \mathsf{R}^{\omega_n^{\mathit{O}n+1}}_{\Pi_m}(\mathsf{K}\mathsf{P}_1\omega) \\ \\ &\equiv_{\Pi_m} \bigcup_{n \in \mathbb{N}} \mathsf{R}^{\mathit{O}n+1}_{\Pi_{n+m}}(\mathsf{K}\mathsf{P}_1\omega) \\ \\ &\equiv \mathsf{K}\mathsf{P}\omega. \end{split}$$

Thus for any $m \ge 2$:

$$\mathsf{KP}\omega \equiv_{\mathsf{\Pi}_m} \mathsf{R}^{\varepsilon_{On+1}}(\mathsf{KP}_0\omega).$$

Provably total functions of collection

Theory BST $_0\omega$ is Π_2 axiomatizable theory which is KP $_0\omega$ with collection replaced by collection rule

$$\frac{\forall x \exists y \ \varphi(x,y)}{\forall x_0 \exists y_0 (\forall x \in x_0) (\exists y \in y_0) \ \varphi(x,y)}, \text{ where } \varphi(x,y) \text{ is } \Delta_0 \ (\Delta_0\text{-CoIIR})$$

Lemma

Suppose φ is Π_2 sentence. Then

$$\mathsf{KP}_0\omega + \varphi \equiv_{\mathsf{\Pi}_2} \mathsf{BST}_0\omega + \varphi + \Delta_0\text{-CollR}.$$

Fundamental sequences for ε_{On+1}

For $t \in \varepsilon_{On+1}$ we define fundamental sequnces $t[\xi]$, with $\xi < \tau_t$:

- if t is 0, we put $\tau_t = 0$;
- if t is $\omega^{v_0} + \ldots + \omega^{v_{m-1}} + \omega^0$, we put $\tau_t = 1$ and $t[0] = \omega^{v_0} + \ldots + \omega^{v_{m-1}}$;
- ▶ if t is $\omega^{v_0} + \ldots + \omega^{v_{m-1}}$ and $\tau_{v_{m-1}} = 1$, we put $\tau_t = \omega$ and $t[n] = \omega^{v_0} + \ldots + \omega^{v_{m-2}} + \omega^{v_{m-1}[0]}n;$
- if t is $\omega^{v_0} + \ldots + \omega^{v_{m-1}}$ and $\tau_{v_{m-1}} > 1$, we put $\tau_t = \tau_{v_{m-1}}$ and $t[\xi] = \omega^{v_0} + \ldots + \omega^{v_{m-2}} + \omega^{v_{m-1}[\xi]}$;
- if t is ε_{α} and α is $\beta + 1$, we put $\tau_{t} = \omega$ and $t[n] = \omega_{n}^{\varepsilon_{\beta}}$;
- if t is ε_{α} and α is limit or $\alpha = \mathit{On}$, we put $\tau_{t} = \alpha$ and $t[\xi] = \varepsilon_{\xi}$.

We have

$$\alpha = \sup_{\xi < \tau_{\alpha}} \alpha[\xi]$$

Hierarchies of ordinal function

We use hierarchy \mathbf{F}_{α} , $\alpha \in \varepsilon_{On+1}$ that is closely connected to fast-growing hierarchy f_{α} :

$f_{\alpha} \colon \mathbb{N} \to \mathbb{N}$	$F_{lpha}\colon \mathit{On} o \mathit{On}$
$f_0(n)=n+1$	$F_0(x) = x + 1$
$f_{\alpha+1}(n)=f_{\alpha}^{n}(n)$	$F_{lpha+1}(x) = sup F^n_lpha(x)$
	$n<\omega$
	$\mathbf{F}_{\alpha}(x) = \sup_{\xi < au_{lpha}} \mathbf{F}_{\alpha[\xi]}(x) \text{ if } au_{lpha} < On$
$f_{\lambda}(n) = f_{\lambda[n]}(n)$	$F_{lpha}(x) = F_{lpha[x]}(x)$ if $ au_{lpha} = \mathit{On}$

Ordinal bounds for Π_2 theorems of $KP\omega$

Recall that

$$\mathsf{KP}\omega \equiv_{\mathbf{\Pi}_2} \mathsf{R}^{\varepsilon_{On+1}}_{\mathbf{\Pi}_2}(\mathsf{KP}_0\omega).$$

By reflexive induction we show

$$\mathsf{RFN}^{\alpha}_{\mathbf{\Pi}_2}(\mathsf{KP}_0\omega) \vdash \mathsf{``F}_{\beta} \text{ is total'', for } \beta < 1 + \alpha$$

For any Δ_0 formula $\varphi(x,y)$

$$\mathsf{R}^{\alpha}_{\mathbf{\Pi}_{2}}(\mathsf{KP}_{0}\omega) \vdash \forall x \exists y \; \varphi(x,y) \\ \Downarrow \\ \mathsf{R}^{\alpha}_{\mathbf{\Pi}_{2}}(\mathsf{KP}_{0}\omega) \vdash \forall x \exists y \big(\rho(y) \leq \mathsf{F}^{n}_{\beta}(\rho(x)) \land \varphi(x,y) \big) \\ \text{for some } \beta < 1 + \alpha \text{ and } n \in \mathbb{N}$$

Спасибо!