# Divisibility of quantum channels and entanglement Moscow, November

**David Davalos**, Instituto de Física UNAM Mario Ziman, Slovak Academy of Sciences Carlos Pineda, Instituto de Física UNAM

November 13, 2018

- Construction of a tool to test if a given channel is a member of a one-parameter semigroup. In other words, if a channel has the form  $e^L$  with L Lindblad  $^1$ : A characterization problem.
- Study and classify the convex set of qubit channels from the point of view of the divisibility types: A classification problem.
  - Pauli
  - Unital
  - Study possible relation with entanglement-breaking: How are the found divisibility structures related with entanglement breaking channels?

<sup>&</sup>lt;sup>1</sup>Wolf et al., "Assessing non-Markovian quantum dynamics."; Evans et al., "Dilations of irreversible evolutions in algebraic quantum theory"

#### Outline

Recent developments and definitions

Connection with dynamical processes

One-parameter semigroups

Classification for qubit case

## Quantum channel

Formally, Let  $\mathcal{B}(\mathcal{H})$  the set of bounded operators acting on the Hilbert space  $\mathcal{H}$ , complete positivity and trace preserving operations (quantum channel for short) are defined as:

#### Quantum channel

Let  $\sigma \in \mathcal{B}(\mathcal{H})$  and  $\tilde{\sigma} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$  with  $\dim \mathcal{H} = n$ , a linear operation  $\mathcal{E}$  is CPTP if and only if:

- $\operatorname{tr}\mathcal{E}[\sigma] = \operatorname{tr}\sigma$ ,
- $\mathcal{E}[\sigma] \ge 0 \ \forall \sigma \ge 0$ ,
- $\operatorname{id}_n \otimes \mathcal{E}[\tilde{\sigma}] \geq 0 \ \forall \tilde{\sigma} \ (\mathsf{CP}).$

## Properties of quantum channels

#### The following sentences are equivalent:

- $\mathcal{E} \in \mathsf{CPTP}$ .
- $\mathcal{E}[\rho] = \operatorname{tr}_{\Sigma} \left[ U(\rho \otimes \sigma) U^{\dagger} \right]$  (Stiniespring).
- $\mathcal{E}[\rho] = \sum_i^M K_i \rho K_i^{\dagger}$ , con  $\sum_i^M K_i^{\dagger} K_i = \mathbb{1}$  (Kraus).

## Illustrative examples

#### Unital channels

 $\mathcal{E}[1] = 1.$ 

- Unitary channels:  $\mathcal{E}[\rho] = U\rho U^{\dagger}$ .
- Convex combinations of unitary channels:  $\mathcal{E}[\rho] = \sum_i p_i U_i \rho U_i^{\dagger}$  (every unital qubit channels can be written in such way).

#### Entanglement-breaking channels

A channel  $\mathcal{E}$  is EB if and only if  $\rho_2 = (\mathrm{id}_k \otimes \mathcal{E}) [\rho_1]$  is a separable state  $\forall \ \rho_1 \in \mathcal{T}(\mathcal{H}), k \in \mathbb{Z}^+$ .

## Dynamical quantum process

#### Dynamical quantum process

It is defined as a curve inside the convex space of CPTP operations whose one extreme is the identity channel, *i.e.* :

$$\mathcal{E}_t:[0,a]\to\mathsf{CPTP}$$

with  $\mathcal{E}_0 = id$ .

#### Instantaneous channels

Note chat if such curve is continuous in some interval  $\mathcal{I}$ , one can write down a master equation for such interval:  $\dot{\mathcal{E}}_t = A_t \mathcal{E}_t$ .

## Examples of dynamical processes

## Example 1: Markovian systems

$$\begin{split} \dot{\rho} &= i[\rho, H(t)] + \sum_{\alpha, \beta} G_{\alpha\beta}(t) \left( F_{\alpha}(t) \rho F_{\beta}^{\dagger}(t) - \frac{1}{2} \{ F_{\beta}^{\dagger}(t) F_{\alpha}(t), \rho \} \right) \\ &= L_{t}(\rho), \end{split}$$

with  $G \geq 0$ . The differential equation for the dynamical process is  $\dot{\mathcal{E}}_t = L_t \mathcal{E}_t$ , its formal solution is:  $\mathcal{E}_t = \mathcal{T} \exp\left(\int_0^t L_s ds\right)$ .

#### Important remarks:

- It's CP-divisible:  $\mathcal{E}_{(t,0)} = \mathcal{E}_{(t,s)} \mathcal{E}_{(s,0)} \forall t \geq s \geq 0 \ [\mathcal{E}_{(t,0)} := \mathcal{E}_t].$ 
  - It defines a family of infinitesimal divisible channels
- If  $L_t = L$ , the process is Lindlad type and the formal solution is simply  $\mathcal{E}_t = e^{tL} : (e^L)^t$ .

## Definition of divisibility

#### Divisible channel

A channel  $\mathcal{E}$  is **indivisible** if and only if it cannot be written as a concatenation of two non-unitary channels. In other words, for every decomposition

$$\mathcal{E} = \mathcal{E}_1 \mathcal{E}_2$$
,

 $\mathcal{E}_1$  or  $\mathcal{E}_2$  is unitary. A channel that is not indivisible is **divisible**.

- Full Kraus rank channels are divisible.
- Channels with minimum determinant are indivisible <sup>2</sup>.

<sup>&</sup>lt;sup>2</sup>Wolf et al., "Dividing Quantum Channels"

## Infinitely divisible channels

#### Definition

 $\mathcal{E}$  is infinitely divisible if and only if  $\forall n \in \mathbb{Z}^+ \exists \mathcal{E}_n$  such that  $\mathcal{E} = (\mathcal{E}_n)^n$ .

- $\mathcal{E}$  can be written as  $\mathcal{E}_0 e^L$  with  $\mathcal{E}_0 L = \mathcal{E}_0 L \mathcal{E}_0$ <sup>3</sup>.
  - $\mathcal{E}_t = \mathcal{E}_0 e^{Lt} \Rightarrow \mathcal{E} = \mathcal{E}_1$ .
  - Given that  $\mathcal{E}_n = \mathcal{E}_0 e^{L/n}$ ,  $\mathcal{E}$  is infinitesimal divisible.
- In the particular case of  $\mathcal{E}_0 = \mathrm{id}$ , one recovers Lindblad divisibility  $\mathcal{E} = e^L$ .
  - ullet Thus  ${\mathcal E}$  belongs to a one-parameter semigroup :  $\mathcal{E}_t = \mathcal{E}^t = e^{Lt}$  4.

$$C^L \ \subset C^\infty$$

<sup>&</sup>lt;sup>3</sup>Denisov, "Infinitely Divisible Markov Mappings in Quantum Probability Theory"

<sup>&</sup>lt;sup>4</sup>Breuer et al., The Theory of Open Quantum Systems

#### Infinitesimal divisible channels

#### Infinitesimal divisibility in CPTP

Let  $\mathcal{L}$  the set of CPTP channels with the property that for every  $\epsilon > 0$ , there exist a finite number of channels  $\mathcal{E}_i \in CPTP$  such that  $|\mathcal{E}_i - id| < \epsilon$  and  $\mathcal{E} = \prod_i \mathcal{E}_i$ . It is said that a channel is infinitesimal divisible if it belongs to the closure of  $\mathcal{L}$ .

$$\mathsf{C}^{\mathsf{Inf}} \ \equiv \{ \mathcal{T} e^{\int_0^t L_\tau d\tau} \} \equiv \{ \mathcal{E} = \prod_i e^{L_i} \} \ ^5 \equiv \mathsf{C}^{\mathsf{CP}}$$
$$\mathsf{C}^{\mathsf{L}} \ \subset \mathsf{C}^\infty \subset \mathsf{C}^{\mathsf{Inf}}$$

<sup>&</sup>lt;sup>5</sup>Wolf et al., "Dividing Quantum Channels"

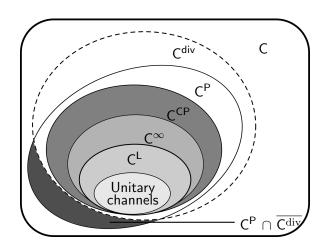
- Infinitesimal divisibility in PTP (positive but not complete positive operations) <sup>6</sup>.
  - This type of operations can rise in the case of a system initially correlated with its surroundings, or if the operation is correlated with the initial state <sup>7</sup>.
  - They will be called C<sup>P</sup>.
- Trivially we have the following:

$$C^{CP} \subset C^{P}$$

<sup>&</sup>lt;sup>6</sup>Wolf et al., "Assessing non-Markovian quantum dynamics."

<sup>&</sup>lt;sup>7</sup>Carteret et al., "Dynamics beyond completely positive maps: Some properties and applications"

## Summary of inclusions



#### **Motivations**

- Construction of a tool to test if a given channel is a member of a one-parameter semigroup. In other words, if a channel has the form  $e^L$  with L Lindblad  $^8$ : A characterization problem.
- Study and classify the convex set of qubit channels from the point of view of the divisibility types: A classification problem.
  - Pauli
  - Unital
  - Study possible relation with entanglement-breaking: How are the found divisibility structures related with entanglement breaking channels?

<sup>&</sup>lt;sup>8</sup>Wolf et al., "Assessing non-Markovian quantum dynamics."; Evans et al., "Dilations of irreversible evolutions in algebraic quantum theory"

## Channels belonging to one-parameter semigroups

#### Definition of the set

Let the set defined by CPTP operations for which there exist at least one natural logarithm, denoted by  $L=\log \mathcal{E}$  and with properties:

- Preserves hermiticity:  $L[X]^{\dagger} = L[X^{\dagger}] \Rightarrow \tau_L$  is hermitian.
- $\omega_{\perp}\tau_L\omega_{\perp} \geq 0^{9} \iff G \geq 0^{10}$ .

The set of L-divisible channels (denoted by  $\mathsf{C}^\mathsf{L}$  ) is given by the closure of the mentioned set.

• Necessity of closure:  $L(\rho) = i[\rho, H] + \gamma[H, [H, \varrho]].$ 

 $<sup>^9\</sup>omega_{\perp} = \mathbb{1} - |\mathsf{Bell}\rangle\langle\mathsf{Bell}| \text{ and } \tau_L = (\mathsf{id}\otimes L)[|\mathsf{Bell}\rangle\langle\mathsf{Bell}|]$ 

 $<sup>^{10}</sup>$ Evans et al., "Dilations of irreversible evolutions in algebraic quantum theory"

## Characterization of channels belonging to one-parameter semigroups

The problem is if a HP generator exist and how to calculate it.

#### Equivalence with another problem

Solve the equation  $C=\exp(X)$  with the restriction that X has real entries, given that C has real entries. This problem was solved by Culver  $^{11}$ .

 $<sup>^{11}\</sup>mbox{Culver},$  "On the Existence and Uniqueness of the Real Logarithm of a Matrix"

## Hermiticity preserving

## Theorem (Existence of hermiticity preserving generator)

A non-singular matrix with real entries  $\hat{\mathcal{E}}$  has a real generator (i.e. a  $\log \hat{\mathcal{E}}$  has real entries) iff the spectrum fulfills the following:

- 1. If it contains negative eigenvalues, they have even-fold degeneration and
- 2. if it contains complex eigenvalues, they come in complex conjugate pairs.

## Parametrization problem of L

#### Freedom in Jordan decomposition

Let  $\hat{\mathcal{E}}$  a matrix with real entries whose Jordan normal form is J, such that:

$$\hat{\mathcal{E}} = wJw^{-1} = \tilde{w}J\tilde{w}^{-1}.$$

where w and  $\tilde{w}$  differ by a matrix factor K that belongs to a continuum of matrices that commute with J, i.e.  $w = K\tilde{w}^{12}$ .

• K not necessarily commutes with  $\log \hat{\mathcal{E}}$ . This leads to a continuous parametrization of the real logarithms of  $\hat{\mathcal{E}}$ . (in addition to the real branches).

 $<sup>^{12}</sup>$ Culver, "On the Existence and Uniqueness of the Real Logarithm of a Matrix"

#### Characterization of Pauli channels

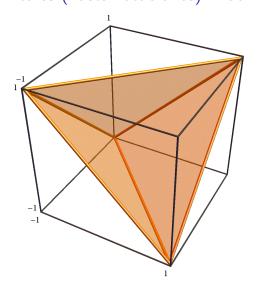
Qubit channels in the Pauli basis are written as:

$$\hat{\mathcal{E}} = \left( \begin{array}{cc} 1 & \vec{0}^T \\ \vec{r} & \Delta \end{array} \right).$$

#### Unital channels upto rotations

- Leave invariant the full mixture  $\mathbb{I}/2$ : They do not move the center of Bloch sphere  $(\vec{r}=0)$ .
- An usefull decomposition can be performed using a modification of SVD:  $\Delta = R_1 D R_2$ , done  $D = \mathrm{diag}\,(1,\lambda_1,\lambda_2,\lambda_3).$   $R_{1,2} \in \mathrm{SO}(3).$ 
  - Esta descomposición corresponde a  $\mathcal{E} = \mathcal{U}_1 \mathcal{D} \mathcal{U}_2$ .
  - $\mathcal{D} \in \mathsf{C}^{\mathsf{Inf}} \Leftrightarrow \mathcal{E} \in \mathsf{C}^{\mathsf{Inf}}$ .
  - $\bullet \ \mathcal{D} \in C^L \ \Rightarrow \mathcal{E} \in C^{Inf} \ .$

## Canales unitales (hasta rotaciones)=Pauli channels



## Pauli channels with positive eigenvalues

• For positive eigenvalues one has a trivial logarithm given by  $L = \log \mathcal{D} = \operatorname{diag}(0, \log \lambda_1, \log \lambda_2, \log \lambda_3)$  (It is unique in case of no degeneration). It is of Lindblad type if and only if:

$$\log \lambda_{j} - \log \lambda_{k} - \log \lambda_{l} \ge 0,$$

$$\Longrightarrow \frac{\lambda_{i}}{\lambda_{j} \lambda_{k}} \ge 1$$
(1)

## Pauli channels with negative eigenvalues

• The only case that has real generator is  $\mathcal{E}=\mathrm{diag}\,(1,-\lambda,-\lambda,\eta).$  But the real generator is always non-diagonal:

$$L = K \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \log(|\lambda|) & (2k+1)\pi & 0 \\ 0 & -(2k+1)\pi & \log(|\lambda|) & 0 \\ 0 & 0 & 0 & \log(|\eta|) \end{pmatrix} K^{-1}.$$
 (2)

• It is parametrized by K and k (Not unique!). A central result is that it is of Lindblad form if and only if:

$$\eta \ge \lambda^2$$



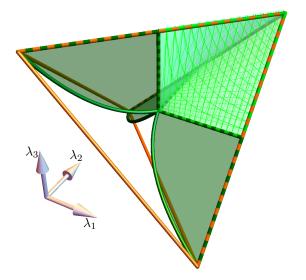
## Pauli channels with negative eigenvalues

In summary for Pauli channels with real generators, they are Lindblad if and only if:

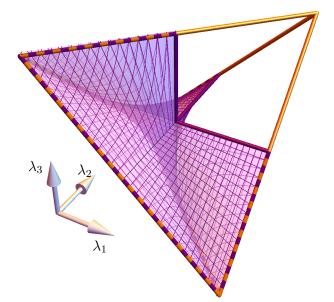
$$\frac{\lambda_i}{\lambda_i \lambda_k} \ge 1,$$

for all combinations of  $i \neq j \neq k$ .

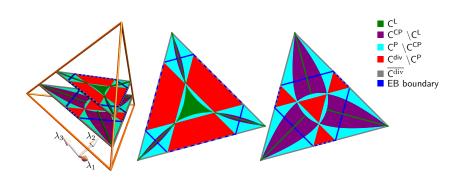
## Pauli channels belonging to $C^L$



## Pauli channels belonging to $\mathsf{C}^\mathsf{CP}$



## Transversal slice



## Some specific results

• Every unital qubit belonging to  $C^{Inf}$  ,  $\mathcal{E}$ , has the form:

$$\mathcal{E} = \mathcal{U}_1 e^L \mathcal{U}_2.$$

- $C^L$  Pauli =  $C^{\infty}$  Pauli
  - Easy to prove knowing that the only idempotent Pauli channels different from identity are:  $\sigma_{x,y,z}$ :  $\rho \mapsto \rho_{\text{diag}}$ .
  - Those channels are included already in the closure of CLPauli.
- We conjectured and proved that every qubit full Kraus rank channel belonging to C<sup>div</sup> \C<sup>Inf</sup>, is entanglement-breaking.
  - $\bullet$  Proof consist on writing the Jamiołkowski-Choi state of the target channel as  $^{13}$

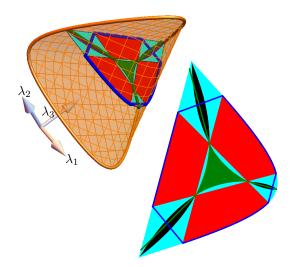
$$\tau_{\mathcal{E}} \propto (X_1 \otimes X_2) \, \tau_{\mathcal{G}} \left( X_1 \otimes X_2 \right)^{\dagger}.$$

 It means that qubit channels with negative determinant are always entanglement-breaking.

<sup>&</sup>lt;sup>13</sup>Ziman et al., "Concurrence versus purity: Influence of local channels on Bell states of two qubits"

#### Slice of non-unital channels

The volume is defined by  $\vec{r} = (1/2, 0, 0)$ :



## **Summary**

- We introduced a tool to test if a channel belongs to a one-parameter semigroup, including the problematic case negative eigenvalues.
- We characterized Pauli channels and some non-unital channels:
  - We observed the non-convexity of the divisibility sets.
  - Qubit channels in  $\mathsf{C}^\mathsf{Inf}$  have a relatively simple form:  $\mathcal{U}_1 e^L \mathcal{U}_2$ .
  - We proved that  $C^{\text{div}} \setminus C^{\text{Inf}} \subset C^{\text{EB}}$  for qubit channels.
  - and  $C^{\infty}_{Pauli} = C^{L}_{Pauli}$ .