Vladimir Protasov

L'Aquila (Italy), MSU, HSE (Russia)

Linear switching systems and several problems of the classical approximation theory

Traffic system

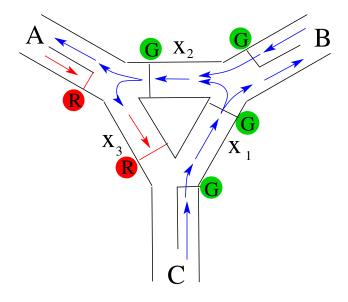
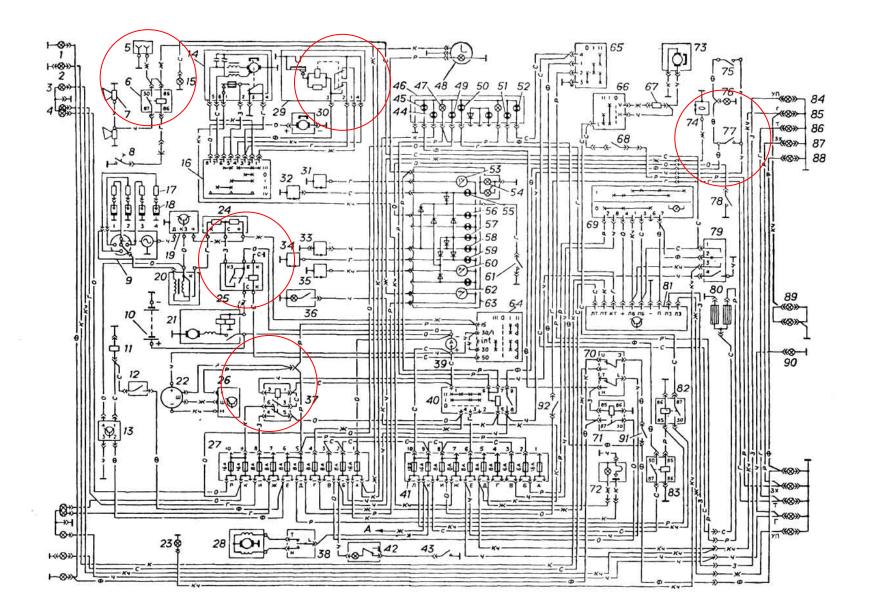


Figure 3: The traffic congestion control problem

Three main roads, 6 traffic lights (red/green), three buffer variables x_i , three symmetric configurations $\sigma \in \{1,2,3\}$.

$$\dot{x}(t) = A_{\sigma(t)}x(t) + b$$

For instance: given x_0 find $\sigma(t)$ so as to stabilize.



Thermal system

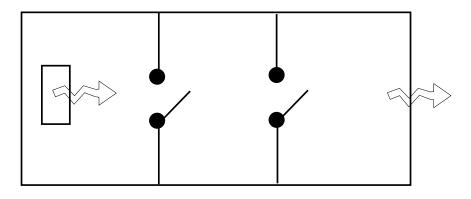


Figure 2: Switching thermal system

 x_i , i = 1,2,3 temperatures in the three rooms. Two doors (open/closed) $\rightarrow \sigma \in \{1,2,3,4\}$.

$$\dot{x}(t) = A_{\sigma(t)}x(t) + Bu(t)$$

For instance: "worst" control problem $\max_{\sigma} x_3(T)$

Linear switching systems

E.Pyatnitsky, V.Opoytsev, A.Molchanov (1980), N.Barabanov, V.Kozyakin (1988), L.Gurvits (1996)

P.Mason, M.Sigalotti, M.Margaliot, F.Blanchini, S.Miani, U.Boskian, D.Liberzon, and many others

Consider a system of linear ODE

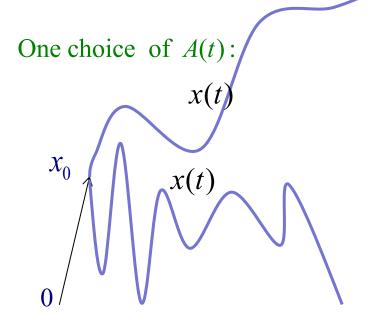
$$\dot{x}(t) = A(t)x(t), \quad t \in [0, +\infty)$$
$$x(0) = x_0$$

$$x = (x_1(t), ..., x_d(t)), \quad A(t) \text{ is a } d \times d \text{ - matrix},$$

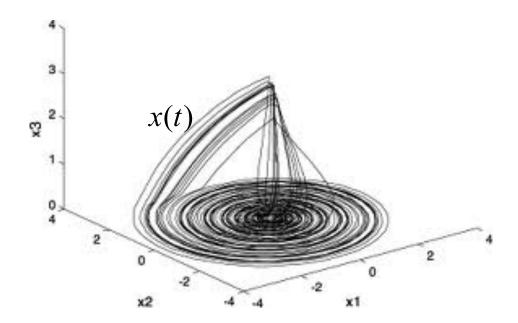
$$\forall t \in [0, +\infty) \quad A(t) \in U$$

U is a compact set of matrices

Example.
$$U = \{A_1, A_2\}$$

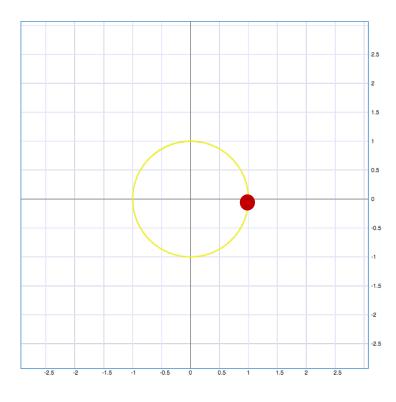


Another choice of A(t):



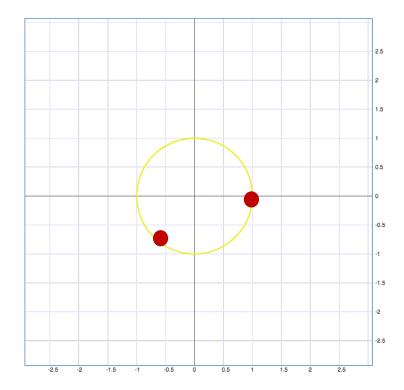
$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} 0 \\ \cos t \end{pmatrix} \qquad \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$

$$x(0) = 1,$$
 $y(0) = 0$



$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} 0 \\ \cos t \end{pmatrix}$$

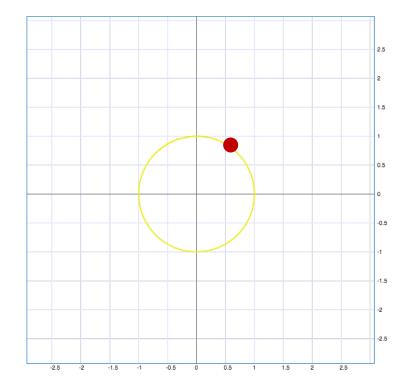
$$x(0) = 1 + \varepsilon, \quad y(0) = -\varepsilon \qquad \varepsilon = 10^{-20}$$



t = 10 sec.

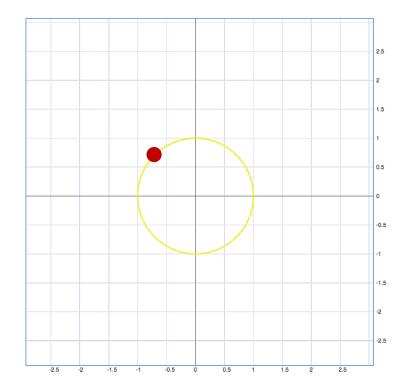
$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} 0 \\ \cos t \end{pmatrix}$$

$$x(0) = 1 + \varepsilon, \quad y(0) = -\varepsilon \qquad \varepsilon = 10^{-20}$$



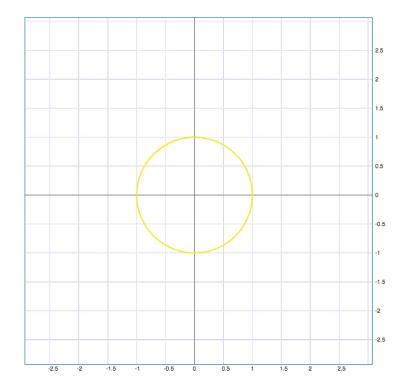
t = 20 sec.

$$x(0) = 1 + \varepsilon, \quad y(0) = -\varepsilon \qquad \varepsilon = 10^{-20}$$



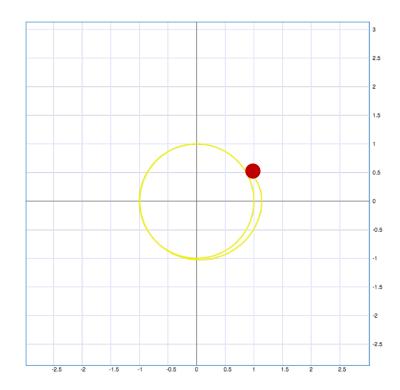
t = 40 sec.

$$x(0) = 1 + \varepsilon, \quad y(0) = -\varepsilon \qquad \varepsilon = 10^{-20}$$



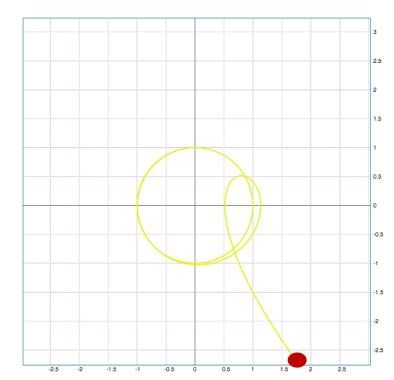
t = 50 sec.

$$x(0) = 1 + \varepsilon, \quad y(0) = -\varepsilon \quad \varepsilon = 10^{-20}$$



t = 45 sec.

$$x(0) = 1 + \varepsilon, \quad y(0) = -\varepsilon \qquad \varepsilon = 10^{-20}$$



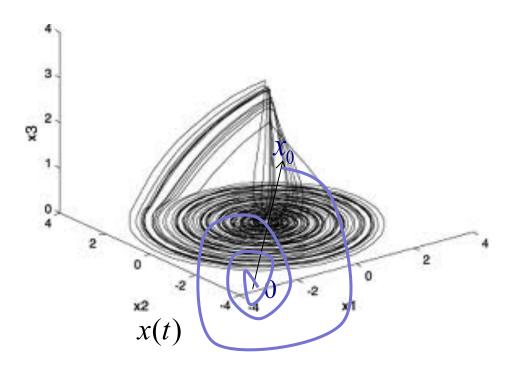
t = 48 sec.

In t = 60 sec. the point will be in 14 km. from the center.

$$x(t) = \cos t + \varepsilon e^t$$
 \Rightarrow the system is unstable

Def. The system is asymptotically stable if $|x(t) - y(t)| \to 0$ as $t \to \infty$, whenever y(0) is close to x(0).

For linear systems, the stability is equivalent to the following property: All trajectories x(t) of the system converge to zero as $t \to \infty$.



How to decide the stability?

$$\dot{x}(t) = A(t)x(t), \quad t \in [0, +\infty)$$

$$x(0) = x_0$$

$$x = (x_1(t), ..., x_d(t)), \quad A(t) \text{ is a measurable control function,}$$

$$A(t) \in U \text{ for almost all } t \in [0, +\infty)$$

If U consists of one matrix A, then $x(t) = e^{tA} x_0$

the system is stable \Leftrightarrow Re (λ) < 0, for all eigenvalues λ of A (i.e., A is a Hurwitz stable matrix)

What to do if $Card(U) \ge 2$?

Necessary condition:

if the system is stable, then all matrices from co(U) are Hurwitz stable.

Not sufficient already for d = 2 (L.Gurvits, 1999)

Conjecture 1 (P.Mason, R.Shorten, 2003) Sufficient for positive systems.

The system is positive if all matrices $A \in U$ are Metzler \Leftrightarrow

$$A_{ij} \ge 0$$
 for all i,j $\in \{1,...,d\}$, provided i $\ne j$ (all off-diagonal elements are non-negative) \Leftrightarrow

$$e^{tA} \ge 0$$
, for all $t \in \mathbb{R}$

Example.

$$A = \begin{pmatrix} -100 & 1 & 2 \\ 0 & -15 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$

The conjecture is proved for d = 2 by P.Mason and R.Shorten (2003) and disproved for $d \ge 3$ by L.Faishil, M.Margaliot and P.Chigansky (2011)

$$A_0 = \left(\begin{array}{ccc} -1 & 0 & 0 \\ 10 & -1 & 0 \\ 0 & 0 & -10 \end{array}\right), \quad A_1 = \left(\begin{array}{ccc} -10 & 0 & 10 \\ 0 & -10 & 0 \\ 0 & 10 & -1 \end{array}\right).$$

Another approach: the Lyapunov function

The Lyapunov function

Definition. A continuous function $f: \mathbb{R}^d \to \mathbb{R}_+$ is called Lyapunov function if

- $1) \quad f(x) > 0, \quad x \neq 0,$
- 2) $f(\alpha x) = \alpha f(x), \quad \alpha \geq 0,$
- 3) f(x(t)) is decreasing in t, for everty trajectory x(t) of the system.

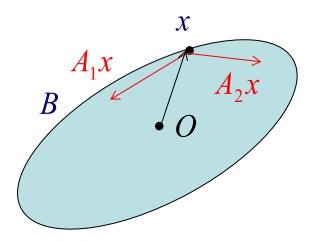
There is a Lyapunov function \Rightarrow the system is stable.

The system is stable \Rightarrow there is a convex symmetric Lyapunov function (norm).

(L.Opoitsev (1977), A.Molchanov, E.Pyatnitsky (1980), N.Barabanov (1989)).

The Lyapunov norm

Take a unit ball of that norm: $B = \{x \in \mathbb{R}^d \mid f(x) \leq 1\}$



A norm f(x) is a Lyapunov norm

for every $x \in \partial B$ and for every $A \in U$ the vector Ax starting at the point x is "directed inside" B.

A quadratic Lyapunov function

Thus, to prove the stability it suffices to present a Lyapunov function f(x).

How to find
$$f(x)$$
?

This is equivalent to constucting a convex body B.

The most natural choice is a quadratic function $f(x) = \sqrt{x^T M x}$, where M is p.s.d. matrix.

A matrix M $\succ 0$ defines a Lyapunov function \Leftrightarrow A^TM + M A $\prec 0$ \forall A \in U This is an s.d.p. problem, it can be efficiently solved.

However, this is just a sufficient condition. In practice, it is far from being necessary.

Very often a quadratic Lyapunov function does not exists, although the system is stable.

There are other types of Lyapunov functions in the literature (piecewise-quadratic, polyhedral, sum-of-squares, etc.)

Definition. The Lyapunov exponent $\sigma(A)$ is the infimum of numbers α such that $||x(t)|| \leq C e^{\alpha t}$ for all trajectories x(t).

The system is stable if and only if $\sigma(A) < 0$.

Theorem (N.Barabanov, 1989). For an arbitrary irreducible system there exists an invariant Lyapunov norm f(x) = |x|, for which two conditions are satisfied:

- 1) $||x(t)|| \le ||x(0)|| e^{\sigma t}$ for all trajectories x(t).
- 2) There is a trajectory x(t) such that $||x(t)|| = ||x(0)|| e^{\sigma t}$ for all t.

In case $\sigma = 0$

(The geometric interpretation). There is a symmetric about the origin convex body $G \subset \mathbb{R}^d$ such that all tracterures started in G never leave it, and there is at least one trajectory that entirely lies on the boundary of G.

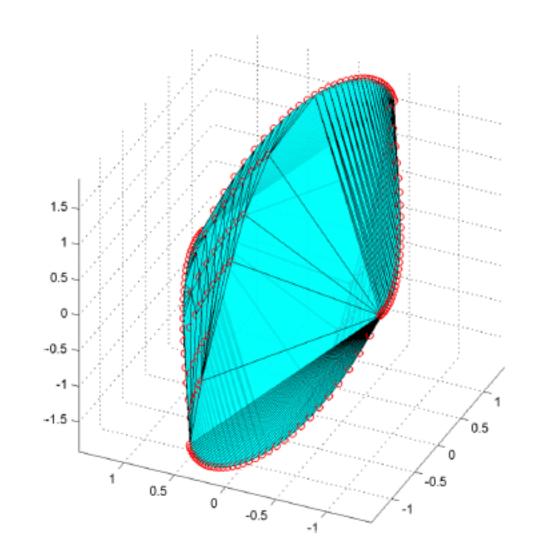
The invariant norm may not be well-approximated by quadratic functions

Polytope (piecewise-linear) Lyapunov function:

$$f(x) = \max_{i=1,\dots,N} (a_i, x)$$

Theorem (F. Blanchini, S. Miani, 1996) For any stable LSS there exists a polytope Lyapunov norm.

The polytope norm is extremely difficult to compute already in the dimension 3



Consider a discrete systems

$$x_{k+1} = A x_k, \quad k \in \mathbb{Z}_+ \quad x_0 \text{ is given}$$

A system is stable if all trajectories tend to zero (Schur stability)

Theorem (N.Barabanov, 1988) A discrete system is stable if and only if its joint spectral radius is smaller than one.

The Joint spectral radius (JSR)

 $A_1, \cdots A_m$ are linear operators in R^d

$$\hat{\rho}(A_1, \cdots, A_m) = \lim_{k \to \infty} \max_{d_1, \dots, d_k \in \{1, \dots, m\}} \left\| A_{d_1} \cdots A_{d_k} \right\|^{1/k}$$
J.C.Rota, G.Strang (1960) -- Normed algebras

N.Barabanov, V.Kozyakin, E.Pyatnitsky, V.Opoytsev, L.Gurvits, ...(1988)

Linear switching systems



C.Micchelli, H.Prautzch, W.Dahmen, I.Daubechies, J.Lagarias, A.Levin, N.Dyn, P.Oswald,..... (1989) C.Heil, D.Strang, ... (1991)

Subdivision algorithms

Wavelets

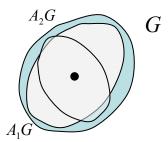
The Joint spectral radius (JSR)

 A_1 , A_m are linear operators in R^d

$$\hat{\rho}(A_1, A_m) = \lim_{k \to \infty} \max_{d_1, \dots, d_k \in \{1, \dots, m\}} ||A_{d_1} A_{d_k}||^{1/k}$$

The geometric sense:

$$\hat{\rho} < 1 \iff$$
 there exists a norm $\| \bullet \|$ in $\mathbb{R}^{dg f}$ such that $\| A_i \| < 1$ for all $i = 1, ..., m$



JSR is the measure of simultaneous contractibility

Taking the unit ball in that norm:

The JSR is smaller than 1 if and only if there is convex body G such that $A_k G \subset int G$, k = 1, ..., m

Example. If all the matrices $A_1,...,A_m$ are symmetric, then one can take G a Euclidean ball \Rightarrow $\hat{\rho} = \max \{ \rho(A_1),...,\rho(A_m) \}$

The Joint spectral radius (JSR)

 A_1, \dots, A_m are linear operators in R^d

$$\hat{\rho}(A_1 \cdots, A_m) = \lim_{k \to \infty} \max_{d_1, \dots, d_k \in \{1, \dots, m\}} \|A_{d_1} \cdots A_{d_k}\|^{1/k}$$

Example 1. If m = 1, we have a family of one matrix $\{A\}$; then $\hat{\rho}(A) = \lim_{k \to \infty} \|A^k\|^{1/k} = \max_{j=1,\dots,d} |\lambda_j|$

Example 2. If all the matrices $A_1, ..., A_m$ are orthogonal, then $||A_{d_1} A_{d_k}|| = 1$, hence $\hat{\rho} = 1$

Example 3. If all the matrices $A_1, ..., A_m$ are diagonal, then

$$\hat{\rho} = \max \{ \rho(A_1), ..., \rho(A_m) \}$$

The same is true if all the matrices

- commute
- are upper (lower) triangular
- are symmetric

In general, however, $\hat{\rho} > \max \{\rho(A_1),...,\rho(A_m)\}$

Other applications of the Joint Spectral Radius

- **Probability**
- Combinatorics
- Number theory
- Mathematical economics
- Discrete math

How to compute or estimate?

Blondel, Tsitsiklis (1997-2000).

- The problem of JSR computing for nonnegative rational matrices in NP-hard
- The problem, whether JSR is less than 1 (for rational matrices) is algorithmically undecidable whenever d > 46.
- There is no polynomial-time algorithm, with respect to both the dimension d and the accuracy

Sometimes easier to prove more

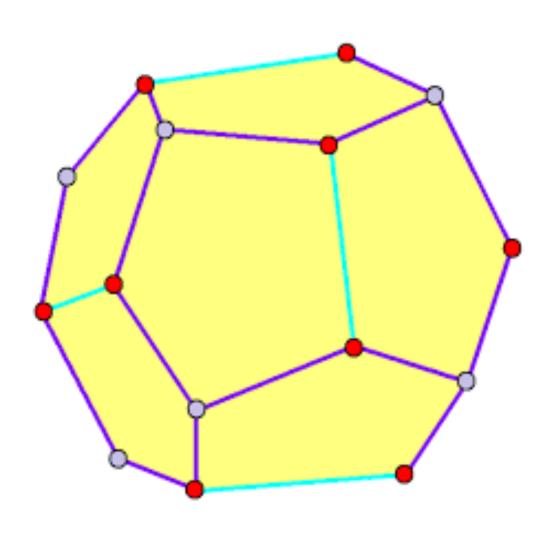
George Polya «Mathematics and Plausible Reasoning» (1954)

When trying to *prove* something, often a good strategy is to try to *prove more*.

When trying to compute something approximately, often a good strategy is to... find it precisely.

The invariant polytope algorithm.

Normalize all operators so that $\rho(A_1, ..., A_m) = 1$ and step-by-step construct a polytope G such that $A_kG \subset G$



Discrete systems and the Markov-Bernstein inequality for exponents.

Discretization of a linear switching system

We make the discretization with the stepsize $\tau > 0$

$$x_k = x(k\tau) \; ; \quad A_k = A(k\tau) \; , \quad k \in \mathbb{N}$$

$$\dot{x}(k\tau) \approx \frac{x(k\tau + \tau) - x(k\tau)}{\tau} = \frac{x_{k+1} - x_k}{\tau}$$

and obtain the discretized system:

$$x_{k+1} = (I + \tau A_k)x_k, \quad k \in N$$

 x_0 is given, $A_k \in U$

How to decide the stability of the discretized system?

$$x_{k+1} = (I + \tau A_k)x_k, \quad k \in \mathbb{N}$$

 x_0 is given, $A_k \in U$

Denote
$$I + \tau A_k = B_k$$
. Then $x_{k+1} = B_k \cdots B_0 x_0$.

The problem becomes: to determine, whether $\max_{B_i \in I + \tau U} ||B_k \cdots B_0|| \to 0$ as $k \to \infty$?

Answer: when the joint spectral radius (JSR) of the set $I + \tau U$ is smaller than 1.

Theorem 3 (N.Barabanov, 1988). The discrete system is stable $\Leftrightarrow \hat{\rho}(I + \tau U) < 1$.

How small must be τ ?

It turns out that τ can be found from the following problem:

$$p(t) = \sum_{k=1}^{d} c_k e^{-\alpha_k t}, \qquad \alpha_1, \dots, \alpha_d > 0$$

Find the minimal constant C such that

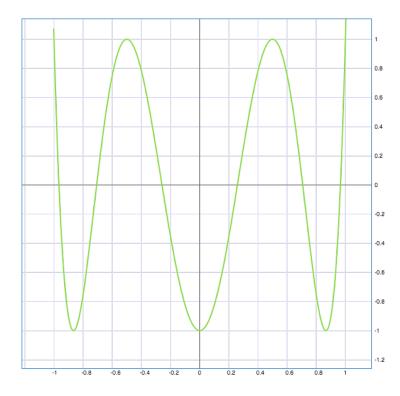
$$||p'|| \leq C ||p||$$

In the norm $C[0, +\infty]$, for all p.

Theorem (A.Markov, S.Bernstein, 1889) For an algebraic polynomial of degree d, we have

$$\|p'\|_{C[-1,1]} \le d^2 \|p\|_{C[-1,1]}$$

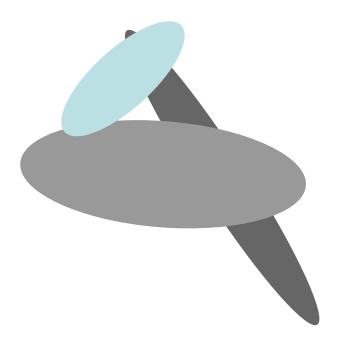
The equality holds only for polynomials proportional to the Chebyshev polynomial T_d



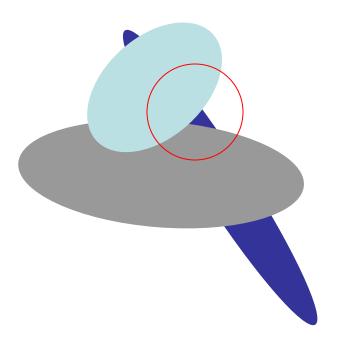
$$T_n(x) = \cos(n \arccos x)$$

$$egin{aligned} T_0(x) &= 1 \ T_1(x) &= x \ T_2(x) &= 2x^2 - 1 \ T_3(x) &= 4x^3 - 3x \ T_4(x) &= 8x^4 - 8x^2 + 1 \ T_5(x) &= 16x^5 - 20x^3 + 5x \ T_6(x) &= 32x^6 - 48x^4 + 18x^2 - 1 \ T_7(x) &= 64x^7 - 112x^5 + 56x^3 - 7x \ T_8(x) &= 128x^8 - 256x^6 + 160x^4 - 32x^2 + 1 \ T_9(x) &= 256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x \ T_{10}(x) &= 512x^{10} - 1280x^8 + 1120x^6 - 400x^4 + 50x^2 - 1 \ T_{11}(x) &= 1024x^{11} - 2816x^9 + 2816x^7 - 1232x^5 + 220x^3 - 11x \end{aligned}$$

Theorem of Helly (1914). A finite family of convex sets is given in the d-dimensional space. Then if every d+1 sets of the family possesses a nonempty intersections, then the whole family does.



Theorem of Helly (1914). A finite family of convex sets is given in the d-dimensional space. Then if every d+1 sets of the family possesses a nonempty intersections, then the whole family does.



Refinement theorem (теорема об очистке) (L.Schnirelman, 1938, V.Levin, 1967).

If a function F(x,t): LxT $\rightarrow R$, where dim L=d, and T is compact is convex in $x \in L$ and is continuous in $t \in T$, then one can choose at most n+1 points t_1, \ldots, t_m , $m \le n+1$ such that

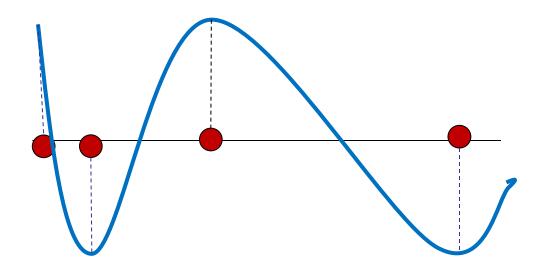
$$\begin{array}{llll} & \text{min} & \text{max} & F(x,t) & = & \text{min} & \text{max} & F(x,t) \\ & \textbf{x} \in \textbf{\textit{L}} & \textbf{\textit{t}} \in \textbf{\textit{f}} & & \textbf{x} \in \textbf{\textit{L}} & \textbf{\textit{t}} \in \{t_1,\dots,t_m\} \end{array}$$

Proof. Clearly, \geq . Let us show that \leq . For every $t \in T$, the set $A_t = \{x \in L \mid F(x,t) \leq a\}$ is convex. If for every t_1, \ldots, t_m , the intersection of A_t is nonempty, then the left hand side $\leq a$. Thus, if the right hand side is $\leq a$, Then so is the left hand side. Hence, \leq .

Let
$$T = [0,1]$$
, $L = \{ x(t) = \sum_{k=0}^{n} x_k f_k(t) \}$, $F(t,x) = |x(t)|$

Thus, $L = P_n$ is the space of polynomials on the system f_0 ,, f_n

$$\begin{array}{lll} \min & || f(t) - p(t) || & = \min & \max & | f(t_k) - p(t_k) | \\ p \in P_n & p \in P_n & k = 0,..., n \end{array}$$



$$\|p'\|_{C[-1,1]} \le d^2 \|p\|_{C[-1,1]}$$

This inequality can be extended to every Chebyshev system of functions. In particular, to the sum of real exponents:

$$p(t) = \sum_{k=1}^{d} c_k e^{-\alpha_k t}, \qquad \alpha_1, \dots, \alpha_d > 0$$

Theorem (P.B. Borwein, T. Erdélyi, 1995) For an exponentioal polynomial of degree d, we have

$$\begin{aligned} &\left\|\mathbf{p}'\right\|_{C[0,+\infty)} &\leq c \, a \, d \, \left\|p\right\|_{C[0,+\infty)}, \\ &\text{where} \quad a = & \max\{\alpha_1,\cdots,\alpha_d\} \,, \, \, c \, > \, 0 \quad \text{is a constant} \end{aligned}$$

The sharp estimates for the constant c have been found by V.Sklyarov (2010).

We apply this inequality to exponential polynomials for the numbers

$$\alpha_k = -\lambda_k$$
, $k = 1,...,d$, where $\{\lambda_1,...,\lambda_d\} = \operatorname{sp}(A)$

However, this method is applicable to matrices with a real spectrum only!

For general complex numbers this does not work because:

Complex exponents do not form a Chebyshev system

How to solve the problem

$$\dot{p}(0) \rightarrow \max$$

$$||p||_{C[0,+\infty)} \le 1$$

$$p(t) = \sum_{k=1}^{d} e^{-\alpha_k t}$$

For arbitrary complex numbers $\alpha_1, \dots, \alpha_d \in \mathbb{C}$?

Neither alternance idea nor Remez type of algorithms work here

Thank you!