# On the Martingale Property of Exponential Local Martingales

Aleksandar Mijatović<sup>1</sup> Mikhail Urusov<sup>2</sup>

<sup>1</sup>University of Warwick <sup>2</sup>Ulm University

Visions in Stochastics, Steklov Mathematical Institute, Moscow, Russia, November 1–3, 2010



Introduction

Formulation of the main result

Introduction

Formulation of the main result

# Description of the main result

Diffusion Y:

$$dY_t = \mu(Y_t) dt + \sigma(Y_t) dW_t$$

with the state space  $J = (I, r), -\infty \le I < r \le \infty$ 

Possibly exits J (in a continuous way). Exit time:  $\zeta$ 

$$Z_t = \mathcal{E}\left(\int_0^{\cdot} b(Y_s) dW_s\right)_{t \wedge \zeta}$$

$$= \exp\left\{\int_0^{t \wedge \zeta} b(Y_s) dW_s - \frac{1}{2} \int_0^{t \wedge \zeta} b^2(Y_s) ds\right\}$$

Z nonnegative local martingale  $\Longrightarrow$  supermartingale Z martingale  $\Longleftrightarrow$  E $Z_t = 1$ ,  $t \in [0, \infty)$ 

Input: functions  $\mu, \sigma, b \colon J \to \mathbb{R}$  (Borel, weak local integrability conditions)

Output: deterministic necessary and sufficient conditions for Z to be a true martingale in terms of  $\mu$ ,  $\sigma$ , and b

# Where applies?

- 1. Girsanov's measure change
- 2. Characterization of different types of no-arbitrage
- Characterization of when a stock price is a true martingale under ELMM
- 4. Constructing pathological (counter)examples

Why considering the possibility to exit J?

Needed e.g. for 2-4 above

#### Literature

#### Sufficient conditions

Girsanov, Gikhman–Skorokhod, Liptser–Shiryaev, Novikov, Kazamaki, . . .

Necessary and sufficient conditions Engelbert–Senf, Blei–Engelbert, . . .

Blei and Engelbert (2009): criterion for  $\mathcal{E}(M)$  to be a true martingale for a strong Markov continuous local martingale M

Introduction

Formulation of the main result

# **Terminology**

Y exits the state space J at r means "with positive probability"

 $s \colon (\mathit{I}, r) \to \mathbb{R}$  scale function of diffusion  $\mathit{Y}$ ,  $\rho := s'$ 

r is good if

$$s(r) < \infty ext{ and } rac{(s(r)-s)b^2}{
ho\sigma^2} \in L^1_{ ext{loc}}(r-)$$

Similar terminology for I

Auxiliary diffusion (with the same state space J = (I, r)):

$$d\widetilde{Y}_t = (\mu + b\sigma)(\widetilde{Y}_t) dt + \sigma(\widetilde{Y}_t) d\widetilde{W}_t$$

 $\widetilde{\mathbf{s}} \colon \mathbf{J} o \mathbb{R}$  scale function of diffusion  $\widetilde{\mathbf{Y}}, \, \widetilde{
ho} := \widetilde{\mathbf{s}}'$ 



#### Useful facts

1. "r is good" means

$$s(r) < \infty ext{ and } rac{(s(r)-s)b^2}{
ho\sigma^2} \in L^1_{ ext{loc}}(r-)$$

or, equivalently,

$$\widetilde{s}(r) < \infty ext{ and } rac{(\widetilde{s}(r) - \widetilde{s})b^2}{\widetilde{
ho}\sigma^2} \in L^1_{ ext{loc}}(r-1)$$

2. If one of the diffusions Y and Y exits J at r and the other does not, then r is bad

These facts are often helpful in the application of the theorem below to specific situations

### Main result

Theorem Z martingale  $\iff$  ((a) or (b)) and ((c) or (d))

- (a) Y does not exit J at r
- (b) *r* is good
- (c)  $\widetilde{Y}$  does not exit J at I
- (d) I is good

Theorem above together with Fact 2 on the previous slide imply

Corollary Suppose *Y* does not exit *J*. Then

Z is a martingale  $\iff \widetilde{Y}$  does not exit J



Introduction

Formulation of the main result

# Example: funny

Fix  $\alpha > -1$  and define diffusion Y by

$$dY_t = |Y_t|^{\alpha} dt + dW_t, \quad Y_0 = x_0 \in J := \mathbb{R}.$$

Let Z be the local martingale given by

$$Z_t = \exp\left\{\int_0^{t\wedge\zeta} Y_s\,dW_s - rac{1}{2}\int_0^{t\wedge\zeta} Y_s^2\,ds
ight\}.$$

Our results imply the following classification:

 $\alpha \in (-1, 1]$ : Z martingale, not u.i.

 $\alpha \in (1,3]$ : Z strict local martingale

 $\alpha > 3$ : Z u.i. martingale

# Example: driftless SDE

 $dY_t = \sigma(Y_t) dW_t$ ,  $Y_0 = x_0 \in J := (0, \infty)$ . We stop Y after it reaches 0

Corollary *Y* is a martingale  $\iff x/\sigma^2(x) \notin L^1_{loc}(\infty -)$ 

Reduction to our setting

$$Y_t = x_0 \mathcal{E} \left( \int_0^{\cdot} \frac{\sigma(Y_s)}{Y_s} dW_s 
ight)_{t \wedge \zeta}$$

Corollary (CEV model) Let  $\sigma(x) = x^{\alpha}$ ,  $\alpha \in \mathbb{R}$ . Then

Y is a martingale  $\iff \alpha \le 1$ , Y is a strict local martingale  $\iff \alpha > 1$ 

# On my website

A. Mijatović and M. Urusov (2010). On the martingale property of certain local martingales. To appear in *Probability Theory and Related Fields*.

A. Mijatović and M. Urusov (2010). Deterministic criteria for the absence of arbitrage in diffusion models. To appear in *Finance and Stochastics*.

A. Mijatović, N. Novak, and M. Urusov (2010). Martingale property of generalized stochastic exponentials. *Preprint*.

The talk covers a part of the first paper.

The second paper: applications in finance.

The third paper: a generalization of the first one.

## Thank you for your attention!

Papers available at

http://www.uni-ulm.de/mawi/finmath/people/urusov.html

