On short-time asymptotics of one-dimensional Harris flows

Alexander Shamov

Institute of Mathematics, Kiev, Ukraine

Visions in Stochastics, 2010

- Motivation
 - Harris Flows
 - The Problem
- 2 The Results
 - Our Approach
 - The Result in Continuous Case
 - The Result in General Case

- Motivation
 - Harris Flows
 - The Problem
- 2 The Results
 - Our Approach
 - The Result in Continuous Case
 - The Result in General Case

The Definition

Definition

The point motion of a Harris flow is a two-parametric process $(X(u,t), u \in \mathbb{R}, t \geq 0)$, such that

- For each u the process $X(u,\cdot)$ is a continuous martingale adapted to a common filtration; X(u,0) = u.
- Their infinitesimal covariation is given by

$$d\langle X(u_1), X(u_2)\rangle_t = \varphi(X(u_1,t) - X(u_2,t))dt,$$

where ϕ is an aperiodic real positive definite function.

• For each t the process $X(\cdot,t)$ is monotone.

We assume that $\varphi(0) = 1$ for convenience.

Examples

Examples

The flow of solutions to an SDE

$$dX(u,t) = \int_{\mathbb{R}} \psi(p-X(u,t)) W(dp,dt),$$

where W is a Gaussian white noise in $\mathbb{R} \times \mathbb{R}_+$. $\varphi = \psi * \psi$, provided that ψ is symmetric.

• The Arratia flow, given by

$$\varphi(x) = \begin{cases} 1, & x = 0 \\ 0, & x \neq 0 \end{cases}$$

The Existence Theorem

Theorem

The process (X(u,t)) exists and is unique in distribution, provided that φ is strictly positive definite and locally Lipshitz outside zero.

- Motivation
 - Harris Flows
 - The Problem
- 2 The Results
 - Our Approach
 - The Result in Continuous Case
 - The Result in General Case

The Problem

We consider the deviation of the Brownian motions from their starting point in sup-norm

$$\sup_{u\in[0,1]}|X(u,t)-u|$$

as t tends to zero.

Examples

Examples |

• If $\varphi \in C^2$ then there is a law of iterated logarithm:

$$\limsup_{t \to 0} \sup_{u \in [0,1]} \frac{|X(u,t) - u|}{\sqrt{2t \ln \ln t^{-1}}} = 1.$$

The Arratia flow behaves in a different way:

$$\sup_{u \in [0,1]} |X(u,t) - u| = \sqrt{t \ln t^{-1}} + O\left(\sqrt{t \ln \ln t^{-1}}\right).$$

• For every possible Harris flow there is an inequality:

$$\limsup_{t \rightarrow 0} \sup_{u \in [0,1]} \frac{\left| X\left(u,t\right) - u \right|}{\sqrt{t \ln t^{-1}}} \leq 1.$$

- Motivation
 - Harris Flows
 - The Problem
- 2 The Results
 - Our Approach
 - The Result in Continuous Case
 - The Result in General Case

The Tangent Process

There exists a Gaussian process (Y(u,t)) with the following properties:

- For each $u \ Y(u, \cdot)$ is a Brownian motion starting at u, adapted to a common filtration;
- The covariaton is given by

$$d\langle Y(u_1), Y(u_2)\rangle_t = \varphi(u_1 - u_2) dt.$$

It can be coupled with X in such a way that

$$d\langle X(u_1), Y(u_2)\rangle_t = \varphi(X(u_1, t) - u_2) dt.$$

Examples

Examples

• For the flow of solutions to an SDE, Y can be given by

$$Y(u,t) = u + \int_{0}^{t} \int_{\mathbb{R}} \psi(u-p) W(dp,dt).$$

• For the Arratia flow, $Y(u, \cdot)$ are independent Brownian motions.

Our Approach

- The asymptotics of $\sup_u |X(u,t)-u|$ can be described by that of Y up to the $O\left(\sqrt{t\ln\ln t^{-1}}\right)$ scale.
- In case Y has a continuous modification, we estimate |X Y| for the coupled X and Y.
- If Y has no continuous modification, the tail probabilities of X are compared to those of Y.

- Motivation
 - Harris Flows
 - The Problem
- 2 The Results
 - Our Approach
 - The Result in Continuous Case
 - The Result in General Case

The Result in Continuous Case

Theorem

Suppose that Y has a continuous modification. Then

$$\sup_{u\in[0,1]}\left|X\left(u,t\right)-Y\left(u,t\right)\right|\ll\sqrt{t\ln\ln t^{-1}}.$$

Corollary

In this case X satisfies

$$\limsup_{t \rightarrow 0} \sup_{u \in [0,1]} \frac{|X\left(u,t\right) - u|}{\sqrt{2t \ln \ln t^{-1}}} = 1.$$

Sketch of Proof

- Take a slowly increasing number of points u_{nk} at time $t_n = q^n$, 0 < q < 1.
- Estimate the difference $|X(u_{nk},t_n)-Y(u_{nk},t)|$ uniformly in k.
- Use continuity of Y to show that

$$\sup_{k} \left| Y\left(u_{n,k+1}, t_{n}\right) - Y\left(u_{nk}, t_{n}\right) \right| \ll \sqrt{t_{n} \ln \ln t_{n}^{-1}},$$

$$t_{n} \to 0, \sup_{k} \left| \Delta u_{nk} \right| \to 0.$$

• Use monotonicity of X to handle the points other than u_{nk} .

- Motivation
 - Harris Flows
 - The Problem
- 2 The Results
 - Our Approach
 - The Result in Continuous Case
 - The Result in General Case

The Result in General Case

Theorem

Suppose that φ is monotone on $[0,\delta]$ for some $\delta > 0$. Then

$$\sup_{u \in [0,1]} |X(u,t) - u| = E(t) + O(\sqrt{t \ln \ln t^{-1}}),$$

where

$$E(t) = \operatorname{E} \sup_{0 \le k < t^{-1/2} \atop c = \sigma} \left| Y\left(kt^{1/2}, t\right) - kt^{1/2} \right|.$$

E(t) may be estimated by using techniques of the theory of Gaussian processes.

Sketch of Proof

- Take the $\lfloor t^{-1/2} \rfloor$ points $u_k := kt^{1/2}$ and $\tilde{u}_k := kt^{1/2} \ln t^{-1}$.
- Estimate the tails of $\sup_k |Y(\tilde{u}_k, t) \tilde{u}_k|$ by means of concentration-of-measure arguments.
- Estimate the upper tail of $\sup_k |X(u_k, t) u_k|$ by that of $\sup_k |Y(\tilde{u}_k, t) \tilde{u}_k|$.
- Exchange u_k and \tilde{u}_k and estimate the lower tail in the same way.
- Use monotonicity of X to handle the points other than u_k .

Slepian Comparison for Martingales

Theorem

Suppose that M and N are continuous \mathbb{R}^d -valued martingales and that N is Gaussian. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a function with second derivatives of at most exponential growth. Further, suppose that

$$\begin{split} d\left\langle M^{i},M^{i}\right\rangle _{t}&=d\left\langle N^{i},N^{i}\right\rangle _{t},\\ d\left\langle M^{i},M^{j}\right\rangle _{t}&\geq d\left\langle N^{i},N^{j}\right\rangle _{t},\\ \partial_{ij}f&\leq0,i\neq j. \end{split}$$

Then

$$\mathsf{E} f(M(1)) \leq \mathsf{E} f(N(1)).$$

