One-dimensional stochastic differential equations with generalized and singular drift

Stefan Blei

Friedrich-Schiller-Universität Jena

"Vision in Stochastics", Moscow November 2, 2010

(ITN Marie Curie "Controlled Systems", PITN-GA-2008-213841)

- 1 Introduction
- 2 One-dimensional stochastic differential equations with generalized and singular drift
- 3 Transformation of the equation
- 4 Existence and uniqueness of solutions

 stochastic differential equations (SDEs) with generalized drift, described by a drift measure:

$$X_t = X_0 + \int_0^t b(X_s) \,\mathrm{d}B_s + \int_{\mathbb{R}} L^X(t,y) \,
u(\mathrm{d}y)$$

- $b: \mathbb{R} \to \mathbb{R}$ measurable, $B = (B_t)_{t \geq 0}$ Wiener process
- X continuous semimartingale
- L^X local time of X: $\int_0^t h(X_s) \, \mathrm{d} \langle X \rangle_s = \int_{\mathbb{R}} h(y) \, L^X(t,y) \, \mathrm{d} y,$ h nonnegative, measurable
- quadratic variation:

$$\langle X \rangle_t = \lim_{n \to \infty} \sum_{k=0}^{\infty} \left(X_{\frac{k+1}{2^n} \wedge t} - X_{\frac{k}{2^n} \wedge t} \right)^2$$
 in probability

$$X_t = X_0 + \int_0^t b(X_s) dB_s + \int_{\mathbb{R}} L^X(t,y) \,
u(dy)$$

- ullet u locally finite signed measure (with an additional condition)
- There exists a unique f such that

$$\nu(\mathrm{d}y) = \frac{1}{2f(y)}\,\mathrm{d}f(y)\,.$$

• f and 1/f are right-continuous, strictly positive and of locally bounded variation.

$$\int_{\mathbb{R}} L^X(t,y) \, \nu(\mathrm{d}y) = \int_{\mathbb{R}} L^X(t,y) \, \frac{1}{2f(y)} \, \mathrm{d}f(y)$$

- New: Consider *drift functions* $f : \mathbb{R} \to [0, \infty)$ with:
- f right-continuous, of locally bounded variation.
- $1/f : \mathbb{R} \to (0, \infty]$ locally integrable.

$$\int_{\mathbb{R}} L^X(t,y) \, \nu(\mathrm{d}y) = \int_{\mathbb{R}} L^X(t,y) \, \frac{1}{2f(y)} \, \mathrm{d}f(y)$$

- New: Consider *drift functions* $f : \mathbb{R} \to [0, \infty)$ with:
- f right-continuous, of locally bounded variation.
- $1/f : \mathbb{R} \to (0, \infty]$ locally integrable.
- Do not assume that 1/f is of locally bounded variation.
- So, it is allowed that

$$F_+ := \{x \in \mathbb{R} : f(x) = 0\}$$
 and $F_- := \{x \in \mathbb{R} : f(x-) = 0\}$

are not empty

$$F := F_+ \cup F_- \neq \emptyset$$
.

- 1 Introduction
- 2 One-dimensional stochastic differential equations with generalized and singular drift
- 3 Transformation of the equation
- 4 Existence and uniqueness of solutions

SDEs with generalized and singular drift

(*)
$$X_t = X_0 + \int_0^t b(X_s) dB_s + \int_{\mathbb{R}} L_m^X(t, y) df(y)$$

- L_m^X local time of the solution defined in dependence of f
- Drift function $f: \mathbb{R} \to [0, +\infty)$ is right-continuous and of locally bounded variation.
- $1/f : \mathbb{R} \to (0, +\infty]$ is locally integrable.

SDEs with generalized and singular drift

$$(*) X_t = X_0 + \int_0^t b(X_s) dB_s + \int_{\mathbb{R}} \underbrace{L_m^X(t,y)}_{\frac{1}{2f(y)}} df(y)$$

- L_m^X local time of the solution defined in dependence of f
- Drift function $f: \mathbb{R} \to [0, +\infty)$ is right-continuous and of locally bounded variation.
- $1/f : \mathbb{R} \to (0, +\infty]$ is locally integrable.

Definition of a solution

 (X, \mathbb{F}) is called a solution to equation (*) over $(\Omega, \mathcal{F}, \mathbf{P})$, if the following conditions are satisfied:

- (X, \mathbb{F}) is a continuous semimartingale.
- L_m^X is a version of the local time of X in the sense of an occupation times formula w.r.t. the measure

$$m(\mathrm{d}x) := 2 f(x) \, \mathrm{d}x \,,$$

Definition of a solution

 (X, \mathbb{F}) is called a solution to equation (*) over $(\Omega, \mathcal{F}, \mathbf{P})$, if the following conditions are satisfied:

- (X, \mathbb{F}) is a continuous semimartingale.
- L_m^X is a version of the local time of X in the sense of an occupation times formula w.r.t. the measure

$$m(\mathrm{d}x) := 2 f(x) \, \mathrm{d}x \,,$$

i.e., L_m^X satisfies for all $t \ge 0$

$$\int_0^t h(X_s) \, \mathrm{d} \langle X \rangle_s = \int_{\mathbb{R}} h(x) \, L_m^X(t,x) \, m(\mathrm{d} x) \quad \mathbf{P}\text{-a.s.}$$

for all nonnegative and measurable functions h.

For all $x \in \mathbb{R}$ $L_m^X(.,x)$ is \mathbb{F} -adapted.

 L_m^X is in t **P**-a.s. continuous and increasing as well as in x right-continuous with limits from the left.

Example

• Equation of a Bessel process of dimension $\delta \in (1,2)$

(BES)
$$X_t = x_0 + B_t + \int_0^t \frac{\delta - 1}{2X_s} ds$$

Equation (BES) coincides with equation

(* BES)
$$X_t = x_0 + B_t + \int_{\mathbb{R}} L_m^X(t, y) \, \mathrm{d}f(y)$$

• where $f(x) = |x|^{\delta-1}$, $x \in \mathbb{R}$, and therefore $F = F_- = \{0\}$.

- 1 Introduction
- 2 One-dimensional stochastic differential equations with generalized and singular drift
- 3 Transformation of the equation
- 4 Existence and uniqueness of solutions

(*)
$$X_t = X_0 + \int_0^t b(X_s) dB_s + \int_{\mathbb{R}} L_m^X(t, y) df(y)$$

- Want to find propositions on existence and uniqueness of solutions of (*).
- Aim: Drift shall be removed as far as possible.
- Define the strictly increasing and continuous function

$$G(x) := \int_0^x \frac{1}{f(y)} dy, \qquad x \in \mathbb{R}.$$

- $F = \emptyset$: Then, 1/f is of locally bounded variation.
- Therefore, G is difference of convex functions.
- Can apply the generalized Itô formula
- X solution of (*), then G leads to a solution Y = G(X) of

$$Y_t = Y_0 + \int_0^t \sigma(Y_s) \, \mathrm{d}B_s \,,$$

where $\sigma = \frac{b}{f} \circ H$, and H is the inverse of G.

- $F \neq \emptyset \iff 1/f$ is not of locally bounded variation.
- Then, G is not the difference of convex function.
- Cannot apply the generalized Itô formula.
- It is not ensured that Y = G(X) is a semimartingale.
- Beside the continuous local martingale part also another part (drift) remains.
- This remaining drift does not need to be of locally bounded variation.

(* BES)
$$X_t = x_0 + B_t + \int_{\mathbb{R}} L_m^X(t, y) \, \mathrm{d}f(y)$$

- $f(x) = |x|^{\delta-1}, x \in \mathbb{R}, \qquad F = F_{-} = \{0\}$
- Let *X* be a solution of (* BES).
- Apply G to X: Y := G(X).

- Use an approximation $G_n(x) \xrightarrow[n \to \infty]{} G(x), x \in \mathbb{R}$
- G_n difference of convex functions, $n \in \mathbb{N}$
- Set $Y^n := G_n(X), \ n \in \mathbb{N}$, apply the generalized Itô formula and $n \to +\infty$

$$\begin{aligned} Y_t &= y_0 + \int_0^t \sigma(Y_s) \, \mathrm{d}B_s + L_m^X(t,0) - L_m^X(t,0-) \\ &= y_0 + \int_0^t \sigma(Y_s) \, \mathrm{d}B_s + \frac{1}{2} \left(L^Y(t,0) - L^Y(t,0-) \right) \\ &= y_0 + \int_0^t \sigma(Y_s) \, \mathrm{d}B_s + \int_0^t \mathbb{1}_{\underbrace{G(F_-)}_{\{0\}}} (Y_s) \, \mathrm{d}Y_s \end{aligned}$$

Theorem

- Let F be finite. (or only $|F \cap [-n, n]| < \infty, n \in \mathbb{N}$)
- Let *X* be a solution to equation (*) with generalized and singular drift.

Theorem

- Let F be finite. (or only $|F \cap [-n, n]| < \infty, n \in \mathbb{N}$)
- Let X be a solution to equation (*) with generalized and singular drift.

Then (Y, \mathbb{F}) , defined by Y = G(X), is a solution to the equation

$$Y_t = Y_0 + \int_0^t \sigma(Y_s) dB_s + \int_0^t \mathbb{1}_{G(F_-)}(Y_s) dY_s$$

with
$$L_m^X(t, x) = \frac{1}{2} L^Y(t, G(x)), t \ge 0, x \in \mathbb{R}$$
, **P**-a.s.

Theorem

- Let F be finite. (or only $|F \cap [-n, n]| < \infty, n \in \mathbb{N}$)
- Let X be a solution to equation (*) with generalized and singular drift.

Then (Y, \mathbb{F}) , defined by Y = G(X), is a solution to the equation

$$(**) Y_t = Y_0 + \int_0^t \sigma(Y_s) \, dB_s + \int_0^t \mathbb{1}_{G(F_-)}(Y_s) \, dY_s$$

with $L_m^X(t, x) = \frac{1}{2} L^Y(t, G(x)), t \ge 0, x \in \mathbb{R}$, **P**-a.s.

- $\sigma = \frac{b}{f} \circ H$, *H* inverse of *G*
- solution: (Y, \mathbb{F}) is a continuous semimartingale.

(**)
$$Y_t = Y_0 + \int_0^t \sigma(Y_s) dB_s + \int_0^t \mathbb{1}_{G(F_-)}(Y_s) dY_s$$

Theorem

- Let (Y, \mathbb{F}) be a solution to equation (**).
- Put X = H(Y).

Then (X, \mathbb{F}) is a solution to equation (*) with generalized and singular drift. Moreover,

$$L_m^X(t,x) = \frac{1}{2}L^Y(t,G(x)), \qquad t \ge 0, \ x \in \mathbb{R}, \$$
P-a.s.

idea of the proof. generalized Itô formula

- 1 Introduction
- 2 One-dimensional stochastic differential equations with generalized and singular drift
- 3 Transformation of the equation
- 4 Existence and uniqueness of solutions

Definition

The solution to equation (*) with generalized and singular drift is called unique (in law), if the following is satisfied: Let (X^1, \mathbb{F}^1) and (X^2, \mathbb{F}^2) be two solutions to equation (*) with the same initial distribution, then X^1 and X^2 have the same law.

- X solution of (* BES), Y = G(X)
- Then

$$Y_{t} = y_{0} + \int_{0}^{t} \sigma(Y_{s}) dB_{s} + \frac{1}{2} \left(L^{Y}(t,0) - L^{Y}(t,0-) \right)$$
$$= y_{0} + \int_{0}^{t} \sigma(Y_{s}) dB_{s} + \left(L_{m}^{X}(t,0) - L_{m}^{X}(t,0-) \right)$$

- X solution of (* BES), Y = G(X)
- Then

$$Y_t = y_0 + \int_0^t \sigma(Y_s) dB_s + \frac{1}{2} L^Y(t,0)$$

= $y_0 + \int_0^t \sigma(Y_s) dB_s + L_m^X(t,0)$

- X solution of (* BES), Y = G(X)
- Then

$$Y_{t} = y_{0} + \int_{0}^{t} \sigma(Y_{s}) dB_{s} - \frac{1}{2} L^{Y}(t, 0-)$$
$$= y_{0} + \int_{0}^{t} \sigma(Y_{s}) dB_{s} - L_{m}^{X}(t, 0-)$$

- X solution of (* BES), Y = G(X)
- Then

$$Y_t = y_0 + \int_0^t \sigma(Y_s) dB_s$$

= $y_0 + \int_0^t \sigma(Y_s) dB_s$

- X solution of (* BES), Y = G(X)
- Then

$$Y_{t} = y_{0} + \int_{0}^{t} \sigma(Y_{s}) dB_{s} + \frac{1}{2} \left(L^{Y}(t,0) - L^{Y}(t,0-) \right)$$
$$= y_{0} + \int_{0}^{t} \sigma(Y_{s}) dB_{s} + \left(L_{m}^{X}(t,0) - L_{m}^{X}(t,0-) \right)$$

- In general we cannot expect uniqueness of solutions of (*).
- The jumps $L_m^X(t,a) L_m^X(t,a-)$ (resp. $L^Y(t,G(a)) L^Y(t,G(a)-)$) in $a \in F_-$ are not determined by the equation.
- We control the jumps of L_m^X in the points of F_- .
- Therefore, let ν be a locally finite signed measure.
- ν has no mass in F_{-}^{c} and satisfies $\nu(\lbrace x \rbrace) < \frac{1}{2}$.

controlled equation

$$(* \ \nu) \quad \left\{ \begin{array}{ll} \text{(i)} \quad X_t = X_0 + \int_0^t b(X_s) \, \mathrm{d}B_s + \int_{\mathbb{R}} L_m^X(t,y) \, \mathrm{d}f(y), \\ \\ \text{(ii)} \quad L_m^X(t,a) - L_m^X(t,a-) = 2 \ L_m^X(t,a) \ \nu(\{a\}), \ a \in F_- \end{array} \right.$$

- F finite
- $(* \nu)$ (ii) gives us an additional relation in the remaining drift of the transformed equation:

$$\begin{aligned} (**\ \nu) \qquad & Y_t = Y_0 + \int_0^t \sigma(Y_s) \, \mathrm{d}B_s + \int_0^t \mathbb{1}_{G(F_-)}(Y_s) \mathrm{d}Y_s \\ & = Y_0 + \int_0^t \sigma(Y_s) \, \mathrm{d}B_s + \int_{\mathbb{R}} L^Y(t,y) \, \nu^G(\mathrm{d}y), \end{aligned}$$

where
$$\nu^G = \nu \circ G^{-1}$$
.

- Equations with generalized drift, described by a drift measure, are well-known.
- There are results about existence and uniqueness of solutions [Engelbert/Schmidt].

• We need the following sets:

$$N_b := \{x \in \mathbb{R} : b(x) = 0\}$$

and

$$E_{b/\sqrt{f}} := \left\{ x \in \mathbb{R} : \int_U f(y) \, b^{-2}(y) \, \mathrm{d}y = \infty \quad \forall \ U \subseteq \mathbb{R} \text{ with } x \in U \right\}$$

Applying G and H, we get

Theorem

Let $|F|<\infty.$ For every initial distribution there exists a solution to the system $(*\ \nu)$ if and only if

$$E_{b/\sqrt{f}}\subseteq N_b$$
.

Theorem

Let $|F|<\infty.$ For every initial distribution there exists a solution to the system $(*\ \nu)$ if and only if

$$E_{b/\sqrt{f}} \subseteq N_b$$
.

Remark

Sufficiency of $E_{b/\sqrt{f}} \subseteq N_b$ also holds without any condition on F.

Theorem

Let $|F| < \infty$. For every initial distribution there exists a solution to the system $(* \ \nu)$ if and only if

$$E_{b/\sqrt{f}} \subseteq N_b$$
 .

Remark

Sufficiency of $E_{b/\sqrt{f}} \subseteq N_b$ also holds without any condition on F.

Theorem

Let $|F| < \infty$. For every initial distribution there exists a unique solution to the system $(* \nu)$ if and only if

$$E_{b/\sqrt{f}} = N_b$$

is satisfied.

Example: Bessel equation with $\delta \in (1,2)$

• Control of the jumps of L_m^X in Zero

$$(* \text{ BES } \nu_{\alpha}) \left\{ \begin{array}{ll} \text{(i)} & X_{t} = x_{0} + B_{t} + \int_{\mathbb{R}} L_{m}^{X}(t,y) \, \mathrm{d}f(y), \\ \\ \text{(ii)} & L_{m}^{X}(t,0) - L_{m}^{X}(t,0-) = 2 \, L_{m}^{X}(t,0) \, \underbrace{\nu_{\alpha}(\{0\})}_{\alpha}, \end{array} \right.$$

- with $\nu_{\alpha} = \alpha \delta_0$, where $\alpha < \frac{1}{2}$.
- We have: $E_{b/\sqrt{f}} = N_b = \emptyset$.
- By variation of the parameter α we find uncountably many different solutions to equation (* BES) and therefore to (BES).

- $\alpha = 0$: The solution X of (BES) has a continuous local time L_m^X (symmetric Bessel process).
- $\alpha \neq$ 0: We find a lot of *skew Bessel processes*.

Thank you!