Analysis of stochastic flows

Andrey A. Dorogovtsev

Department of Random Processes Institute of Mathematics NAS Ukraine

VISIONS in STOCHASTICS, 2010

Stochastic flows

- \bullet (X, ρ) is a complete separable metric space
- $\{\phi_{s,t}; 0 \le s \le t\}$ is a family of random mappings in X
- For any $0 \le s_1 \le s_2 \le \dots s_n < \infty \ \phi_{s_1,s_2}$,... , ϕ_{s_{n-1},s_n} are independent.
- For any $s, t, r \ge 0$ $\phi_{s,t}$ and $\phi_{s+r,t+r}$ are equidistributed.
- For any $r \leq s \leq t$ and $u \in X$ $\phi_{r,s}\phi_{s,t}(u) = \phi_{r,t}(u)$, $\phi_{r,r}$ is the identity map.
- The random process $\{x(u,t) = \phi_{0,t}(u); t \ge 0\}$ describes the motion of a particle, which starts from the point u

Stochastic flows

Example

• $X = \mathbb{R}^d$, for every u the process x(u, t) is a solution to the Cauchy problem for SDE

$$dx(u,t) = a(x(u,t))dt + b(x(u,t))dw(t), x(u,0) = u.$$

Example

The Harris flow of Brownian particles

X = R, $\{x(u,t); u \in X, t \ge 0\}$ is a family of Brownian martingales with respect to a common filtration, x is order-preserving and

$$d < x(u_1, \bullet), x(u_2, \bullet) > = \varphi(x(u_1, t) - x(u_2, t))dt,$$

where φ is a positive definite function.

The Arratia flow

$$\varphi(x)=1_{\{x=0\}}$$

Stochastic flows

Properties

- The law of the one-point motions does not determine the flow
- Possibility of coalescence
- The map $x(\bullet, t)$ can be discontinuous

The relationships with SDE

$$dx_{arepsilon}(u,t) = \int_{\mathbb{R}} \psi_{arepsilon}(x_{arepsilon}(u,t)-p) W(dp,dt) \ \int_{\mathbb{R}} \psi_{arepsilon}^2(u) du = 1, \, supp \psi_{arepsilon} \subset [-arepsilon, arepsilon]$$

Theorem

A. A. Dorogovtsev, 2005. The n-point motions of x_{ε} converge to the n-point motions of the Arratia flow when $\varepsilon \to 0$.

Theorem

T. V. Malovichko, 2008. The same statement when

$$\psi_{\varepsilon}^2 \rightarrow p_1 \delta_{-1} + p_2 \delta_1$$

Questions

- Does the flow of Brownian particles inherit the properties of solutions to SDE with a Gaussian noise? (Girsanov theorem, Large Deviations Principle, Clark representation, Krylov-Veretennikov expansion)
- Properties of the mappings $\phi_{0,t}: X \to X$

Gaussian approach

$$dx_{\varepsilon}(u,t) = \sqrt{\varepsilon} \int \varphi(x_{\varepsilon}(u,t) - p) W(dp,dt)$$
 $x_{\varepsilon}(u,0) = u$

Theorem

Dorogovtsev, Ostapenko, 2009. Suppose that $\varphi = \varphi_1 \star \varphi_2$, $\varphi_i \subset S(\mathbb{R})$, $\mu = N(0,1)$. x_{ε} satisfies LDP in $C([0;1], L_2(\mathbb{R}, \mu))$ with the rate function

$$I(z)=\inf\frac{1}{2}\int\int_{0}^{+\infty}h^{2}(p,t)dpdt,$$

$$dz(u,t) = \int \varphi(z(u,t) - \rho)h(\rho,t)d\rho dt, z(u,0) = u, u \in \mathbb{R}$$

 $I(z) = +\infty$ if there is no such h.

$$0 = u_0 < u_1 < \dots < u_n = 1,$$

$$\tau(u_0) = T, \ \tau(u_{k+1}) = \inf\{s : x(u_{k+1}, s) = x(u_k, s)\} \land T$$

$\mathsf{Theorem}$

Dorogovtsev, 2006. The total time of free motion in the Arratia flow is finite.

$$\sup \sum_{k=0}^n \tau(u_k) < +\infty \, a.s.$$

Corollary

There exist the integrals

$$\int_{0}^{1} \int_{0}^{\tau(u)} a(x(u,s)) ds = \lim_{\max u_{k+1} - u_k \to 0} \sum_{k=0}^{n} \int_{0}^{\tau(u_k)} a(x(u_k,s)) ds$$

$$\int_{0}^{1} \int_{0}^{\tau(u)} a(x(u,s)) dx(u,s) =$$

$$= L_2 - \lim_{\max u_{k+1} - u_k \to 0} \sum_{k=0}^{n} \int_{0}^{\tau(u_k)} a(x(u_k,s)) dx(u,s)$$

Theorem

Dorogovtsev, 2006. The distribution of the Arratia flow with the drift a is absolutely continuous with respect to the distribution of the Arratia flow with the density

$$\exp\{\int_0^1 \int_0^{\tau(u)} a(x(u,s)) dx(u,s) - \frac{1}{2} \int_0^1 \int_0^{\tau(u)} a^2(x(u,s)) ds\}$$

Theorem

Dorogovtsev, Ostapenko, 2009. The family $\{x_{\varepsilon}(u,t)=x(u,\varepsilon t),\, \varepsilon>0\}$ satisfies LDP with the rate function

$$I(x) = \frac{1}{2} \int_{0}^{1} \int_{0}^{\tau(u)} h'_{t}(u, t)^{2} dt$$

Theorem

Dorogovtsev, 2008. The linear combinations of functions

$$\exp\{\int_0^1 \int_0^{\tau(u)} a(u,s) dx(u,s) - \frac{1}{2} \int_0^1 \int_0^{\tau(u)} a^2(u,s) ds\}, a \in C([0,1]^2)$$

are dence in the space of all square-integrable functionals from the Arratia flow.

Definition

(A. V. Skorokhod) Strong random operator is a continuous in probability linear map from the space H to the space of all random elements in H.

Example

- $H = L_2([0; 1]), Af(t) = \int_0^t f(s) dw(s)$
- $H = L_2([0; 1]), Af = f(\theta), \theta$ is uniformly distributed

In general a strong random operator is not a randomly chosen bounded linear operator. It can be unbounded with probability one.

A. V. Skorokhod. Random linear operators. Kiev: Nauk. dumka, 1978.

Definition

A family of strong random operators $\{G_{s,t}, 0 \le s \le t < \infty\}$ is referred to as a semigroup if the following conditions hold:

- For any $s, t, r \ge 0$: $G_{s,t}$ and $G_{s+r,t+r}$ are equidistributed.
- $\textbf{3} \ \, \text{For any} \,\, 0 \leq s_1 \leq \cdots \leq s_n < \infty \, \colon \,\, G_{s_1,s_2} \,\, , \ldots \,\, , G_{s_{n-1},s_n} \,\, \text{are} \\ \, \text{independent}.$
- For any $r \le s \le t$: $G_{r,s}G_{s,t} = G_{r,t}$, $G_{r,r} = I$, where I is the identity operator.

Example

Stochastic semigroup related to the stochastic flow

$$G_{s,t}f(u)=f(\phi_{s,t}(u))$$

Theorem

(Krylov-Veretennikov expansion) If

$$dx(u,t) = a(x(u,t))dt + b(x(u,t))dw(t), x(u,0) = u$$

then

$$f(x(u,t)) =$$

$$=\sum_{n=0}^{\infty}\int_{0$$

Here $\{T_t\}$ is a transition semigroup and $B=b\frac{d}{du}$.

$\mathsf{Theorem}$

Dorogovtsev, 2010. If $\{G_{s,t}\}$ is a multiplicative functional from the Wiener process W, then

$$G_{0,t} = \sum_{n=0}^{\infty} \int_{0 \le s_1 \le \dots \le s_n \le t} Q_{t-s_n} BQ_{s_n-s_{n-1}} B \dots Q_{s_1} dW(s_1) \dots dW(s_n),$$

$$Q_t = EG_{0,t}, B = \lim_{t \to 0+} \frac{1}{t} EG_{0,t}W(t).$$

Remark. $G_{0,t}$ is a "solution" to the equation

$$dG_{0,t} = AG_{0,t}dt + BG_{0,t}dW(t)$$

Semigroups of finite-dimensional projections

Remark. Suppose that $\{G_t, 0 \le t < \infty\}$ is a strongly continuous semigroup of bounded operators in a separable Banach space \mathscr{B} . Assume that $\dim G_t(\mathscr{B}) < \infty$ for every t > 0. Then $\dim \mathscr{B} < \infty$.

Example

Let H be a Hilbert space with an orthonormal basis $\{e_k, k \geq 1\}$. Consider the sequence $\{n_k, k \geq 1\}$ of independent Poisson processes with intensities $\{\lambda_k, k \geq 1\}$. Suppose that

$$\forall \rho > 0: \quad \sum_{k=1}^{\infty} \exp(-\rho \lambda_k) < +\infty,$$

$$v_{s,t}^{k} = \begin{cases} 0, n_{k}(t) - n_{k}(s) > 0, \\ 1, n_{k}(t) - n_{k}(s) = 0. \end{cases}$$

Then

$$G_{s,t}(u) = \sum_{k=1}^{\infty} (u, e_k) v_{s,t}^k e_k.$$

Semigroups of finite-dimensional projections

Theorem

Let $\{G_{s,t}, 0 \leq s \leq t < \infty\}$ be a semigroup of random finite-dimensional projections in a separable Hilbert space H. Then there exists an orthonormal basis $\{e_k, k \geq 1\}$ in H and Poisson processes $\{n_k, k \geq 1\}$ which have jointly independent increments, such that

$$G_{s,t}(u) = \sum_{k=1}^{\infty} (u, e_k) v_{s,t}^k e_k,$$

where for every k

$$v_{s,t}^{k} = \begin{cases} 0, n_{k}(t) - n_{k}(s) > 0, \\ 1, n_{k}(t) - n_{k}(s) = 0. \end{cases}$$

Widths of compact sets

Let $\{G_{s,t}, 0 \le s \le t < \infty\}$ be a random semigroup of finite-dimensional projections and let K be a compact subset of H. The behavior of the value

$$\varsigma_{\mathcal{K}}(t) = \max_{x \in \mathcal{K}} ||x - G_{0,t}x||$$

as $t \to 0$ describes the geometry of the semigroup $\{G_{s,t}, 0 \le s \le t < \infty\}$.

Widths of compact sets

Example

Suppose that $\lambda_n=n,\,n\geq 1,$ Poissonian processes are independent and

$$K = \{x : (x, e_n)^2 \le \frac{1}{n^2}, n \ge 1\}.$$

$$\varsigma_K(t)^2 = \sum_{n=1}^{\infty} \frac{\xi_n(t)}{n^2}$$

$$P - \lim_{t \to 0} \frac{\varsigma_K(t)}{\sqrt{t \ln t}} = 1$$

Widths of compact sets

Example

$$K = \{x : \sum_{n=1}^{\infty} n^2 (x, e_n)^2 \le 1\}.$$

$$\varsigma_K(t)^2 = \max_{n : \xi_n(t) = 0} \frac{1}{n^2}$$

$$\liminf_{t \to 0} arsigma_{\mathcal{K}}(t) arphi(t) \geq 1, \ arphi(t) = \sqrt{rac{2}{t} extit{IInt}}.$$

Dimension of operators in a semigroup

$$d_n(K) = \inf_{\dim L = n} \max_{x \in K} \rho(x, K)$$

Example

Define $\alpha(t) = \dim G_{0,t}(H)$.

$$\limsup_{t\to 0}\frac{t\alpha(t)}{2|\ln t|}\leq 1$$

$$\liminf_{t\to 0} lpha(t)t|\ln t|\geq rac{1}{2}.$$