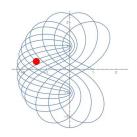
New integrable two-centre problem on sphere with Dirac magnetic field

Alexander Veselov Loughborough, UK and Moscow State University, Russia

Classical mechanics, dynamical systems and mathematical physics Steklov Mathematical Institute, January 23, 2020

Euler's two fixed-centre problem

L. Euler De motu corporis ad duo centra virium fixa attracti. Novi Comm. Acad. Sci. Petrop. 10 (1766), 207-242.



Puc.: Leonhard Euler (1707-1783) and orbits in his two-centre problem

Celebrated Euler two-centre problem with

$$H = rac{1}{2}(
ho_1^2 +
ho_2^2) - rac{\mu}{r_1} - rac{\mu}{r_2}, \quad r_{1,2} = \sqrt{q_1^2 + (q_2 \pm c)^2}$$

was the first non-trivial mechanical system integrated since Newton.

"Second birth of the old problem"

Aksenov, Grebennikov and Demin, 1961: Euler's system with imaginary distance between the centres as an approximation of the satellite motion in the gravitational field of the Earth spheroid

Рис.: Novizhilov's sketch of the authors in Beletski's book

Spherical analogue of Euler's two-centre problem

Killing, 1885; Kozlov and Harin, 1992:

The corresponding spherical analogue of the Newton-Coulomb potential is

$$U=-\mu\cot\theta_1-\mu\cot\theta_2,$$

where θ_1 and θ_2 are the spherical distances from the fixed centres.

Spherical analogue of Euler's two-centre problem

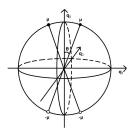
Killing, 1885; Kozlov and Harin, 1992:

The corresponding spherical analogue of the Newton-Coulomb potential is

$$U=-\mu\cot\theta_1-\mu\cot\theta_2,$$

where θ_1 and θ_2 are the spherical distances from the fixed centres.

The system has actually **four singularities**, which can be interpreted as two antipodal pairs of centres with opposite charges $\pm \mu$.



Spherical analogue of Euler's two-centre problem

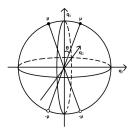
Killing, 1885; Kozlov and Harin, 1992:

The corresponding spherical analogue of the Newton-Coulomb potential is

$$U=-\mu\cot\theta_1-\mu\cot\theta_2,$$

where θ_1 and θ_2 are the spherical distances from the fixed centres.

The system has actually **four singularities**, which can be interpreted as two antipodal pairs of centres with opposite charges $\pm \mu$.



Adding the Dirac magnetic field seems to destroy the integrability...

Lie algebra e(3) and Dirac magnetic monopole

Let e(3) be the Lie algebra of the Euclidean motion group E(3) of \mathbb{R}^3 and consider the canonical Lie-Poisson bracket on its dual space $e(3)^*$:

$$\{M_i,M_j\}=\epsilon_{ijk}M_k,\ \{M_i,q_j\}=\epsilon_{ijk}q_k,\ \{q_i,q_j\}=0.$$

Lie algebra e(3) and Dirac magnetic monopole

Let e(3) be the Lie algebra of the Euclidean motion group E(3) of \mathbb{R}^3 and consider the canonical Lie-Poisson bracket on its dual space $e(3)^*$:

$$\{M_i, M_j\} = \epsilon_{ijk}M_k, \quad \{M_i, q_j\} = \epsilon_{ijk}q_k, \quad \{q_i, q_j\} = 0.$$

The symplectic leaves are the coadjoint orbits of E(3) determined by

$$C_1 = (p, p) = R^2, \qquad C_2 = (I, p) = \nu R.$$

Lie algebra e(3) and Dirac magnetic monopole

Let e(3) be the Lie algebra of the Euclidean motion group E(3) of \mathbb{R}^3 and consider the canonical Lie-Poisson bracket on its dual space $e(3)^*$:

$$\{M_i, M_j\} = \epsilon_{ijk}M_k, \quad \{M_i, q_j\} = \epsilon_{ijk}q_k, \quad \{q_i, q_j\} = 0.$$

The symplectic leaves are the coadjoint orbits of E(3) determined by

$$C_1 = (p, p) = R^2, \qquad C_2 = (I, p) = \nu R.$$

Novikov and Schmelzer, 1981: the variables

$$L_i = M_i - \frac{\nu}{R}q_i, \quad i = 1, 2, 3$$

satisfy $(q,q)=R^2$, (L,q)=0. This identifies the coadjoint orbits with T^*S^2 with the symplectic form

$$\omega = dP \wedge dQ + \nu dS,$$

where $dP \wedge dQ$ is the standard symplectic form on T^*S^2 and $\mathcal{H} = \nu dS$ is the magnetic field of the Dirac monopole of charge ν .

Spherical Euler problem on $e(3)^*$

Mamaev, 2003: In the coordinates M, q on $e(3)^*$ the Hamiltonian of the spherical analogue of the Euler two-centre problem is

$$H = \frac{1}{2}|M|^2 - \mu \frac{\beta q_3 - \alpha q_1}{\sqrt{q_2^2 + (\alpha q_3 + \beta q_1)^2}} - \mu \frac{\beta q_3 + \alpha q_1}{\sqrt{q_2^2 + (\alpha q_3 - \beta q_1)^2}},$$

where μ, α, β are parameters such that $\alpha^2 + \beta^2 = 1$.

Spherical Euler problem on $e(3)^*$

Mamaev, 2003: In the coordinates M, q on $e(3)^*$ the Hamiltonian of the spherical analogue of the Euler two-centre problem is

$$H = \frac{1}{2}|M|^2 - \mu \frac{\beta q_3 - \alpha q_1}{\sqrt{q_2^2 + (\alpha q_3 + \beta q_1)^2}} - \mu \frac{\beta q_3 + \alpha q_1}{\sqrt{q_2^2 + (\alpha q_3 - \beta q_1)^2}},$$

where μ, α, β are parameters such that $\alpha^2 + \beta^2 = 1$.

At the special level (M, q) = 0 the system has an additional integral

$$F = \alpha^2 M_1^2 - \beta^2 M_3^2 - 2\alpha\beta \left(\mu \frac{\beta q_1 - \alpha q_3}{\sqrt{q_2^2 + (\beta q_1 - \alpha q_3)^2}} + \mu \frac{\alpha q_1 + \beta q_3}{\sqrt{q_2^2 + (\alpha q_3 + \beta q_1)^2}} \right).$$

Spherical Euler problem on $e(3)^*$

Mamaev, 2003: In the coordinates M, q on $e(3)^*$ the Hamiltonian of the spherical analogue of the Euler two-centre problem is

$$H = \frac{1}{2}|M|^2 - \mu \frac{\beta q_3 - \alpha q_1}{\sqrt{q_2^2 + (\alpha q_3 + \beta q_1)^2}} - \mu \frac{\beta q_3 + \alpha q_1}{\sqrt{q_2^2 + (\alpha q_3 - \beta q_1)^2}},$$

where μ, α, β are parameters such that $\alpha^2 + \beta^2 = 1$.

At the special level (M, q) = 0 the system has an additional integral

$$F = \alpha^2 M_1^2 - \beta^2 M_3^2 - 2\alpha\beta \left(\mu \frac{\beta q_1 - \alpha q_3}{\sqrt{q_2^2 + (\beta q_1 - \alpha q_3)^2}} + \mu \frac{\alpha q_1 + \beta q_3}{\sqrt{q_2^2 + (\alpha q_3 + \beta q_1)^2}} \right).$$

When $(M,q) \neq 0$ then the Poisson bracket $\{F,H\}$ is not vanishing and the system is believed to be non-integrable.

New integrable system on $e(3)^*$

Veselov and Ye, 2019: The system on $e(3)^*$ with the Hamiltonian

$$H = \frac{1}{2}|M|^2 - \mu \frac{|q|}{\sqrt{R(q)}},$$

$$R(q) = (A - B)q_2^2 + (\sqrt{A}q_3 - \sqrt{B}|q|)^2, \quad A > B > 0$$

is Liouville integrable with the additional integral

$$F = AM_1^2 + BM_2^2 + \frac{2\sqrt{AB}}{|q|}(M,q)M_3 - 2\mu\sqrt{AB}\frac{q_3}{\sqrt{R(q)}}.$$

New integrable system on $e(3)^*$

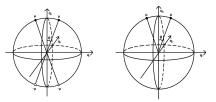
Veselov and Ye, 2019: The system on $e(3)^*$ with the Hamiltonian

$$H = \frac{1}{2}|M|^2 - \mu \frac{|q|}{\sqrt{R(q)}},$$

$$R(q) = (A - B)q_2^2 + (\sqrt{A}q_3 - \sqrt{B}|q|)^2, \quad A > B > 0$$

is Liouville integrable with the additional integral

$$F = AM_1^2 + BM_2^2 + \frac{2\sqrt{AB}}{|q|}(M,q)M_3 - 2\mu\sqrt{AB}\frac{q_3}{\sqrt{R(q)}}.$$



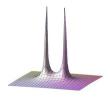
Puc.: Position of the fixed centres in the classical (left) and the new (right) systems

New integrable magnetic two-centre system on S^2

At the symplectic leaf with (p,p)=1, $(M,p)=\nu$ we have a new integrable system on S^2 with two locally Coulomb singularities with charge $\mu/\sqrt{A-B}$ fixed at the points $(\pm\sqrt{\frac{A-B}{A}},0,\sqrt{\frac{B}{A}})$ in the external field of Dirac magnetic monopole with charge ν .

New integrable magnetic two-centre system on S^2

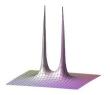
At the symplectic leaf with (p,p)=1, $(M,p)=\nu$ we have a new integrable system on S^2 with two locally Coulomb singularities with charge $\mu/\sqrt{A-B}$ fixed at the points $(\pm\sqrt{\frac{A-B}{A}},0,\sqrt{\frac{B}{A}})$ in the external field of Dirac magnetic monopole with charge ν .



Puc.: Graph of the potential $\mathit{U}(q)$ with $\mu < 0$ after the stereographic projection

New integrable magnetic two-centre system on S^2

At the symplectic leaf with (p,p)=1, $(M,p)=\nu$ we have a new integrable system on S^2 with two locally Coulomb singularities with charge $\mu/\sqrt{A-B}$ fixed at the points $(\pm\sqrt{\frac{A-B}{A}},0,\sqrt{\frac{B}{A}})$ in the external field of Dirac magnetic monopole with charge ν .



Puc.: Graph of the potential U(q) with $\mu < 0$ after the stereographic projection

One can show that this is the only integrable extension of Dirac magnetic monopole with additional integral quadratic in momenta (apart from the classical Clebsch case, **Veselov and Ye, to appear**).

New system in elliptic coordinates

Consider the unit sphere given by the equation $q_1^2 + q_2^2 + q_3^2 = 1$, and introduce the *spherical elliptic (Neumann) coordinates* as the roots u_1 , u_2 of the quadratic equation

$$\Phi(u) = \frac{q_1^2}{A - u} + \frac{q_2^2}{B - u} + \frac{q_3^2}{C - u} = 0,$$

where C = 0 and A > B > 0 are the same as before.

New system in elliptic coordinates

Consider the unit sphere given by the equation $q_1^2 + q_2^2 + q_3^2 = 1$, and introduce the *spherical elliptic (Neumann) coordinates* as the roots u_1 , u_2 of the quadratic equation

$$\Phi(u) = \frac{q_1^2}{A-u} + \frac{q_2^2}{B-u} + \frac{q_3^2}{C-u} = 0,$$

where C = 0 and A > B > 0 are the same as before.

The Hamiltonian of the new system has the form

$$H = \frac{1}{2} \left(\frac{f(u_1)}{u_1 - u_2} \tilde{p}_1^2 + \frac{f(u_2)}{u_2 - u_1} \tilde{p}_2^2 \right) - \frac{\mu}{\sqrt{u_2} - \sqrt{u_1}}.$$

New system in elliptic coordinates

Consider the unit sphere given by the equation $q_1^2 + q_2^2 + q_3^2 = 1$, and introduce the *spherical elliptic (Neumann) coordinates* as the roots u_1 , u_2 of the quadratic equation

$$\Phi(u) = \frac{q_1^2}{A-u} + \frac{q_2^2}{B-u} + \frac{q_3^2}{C-u} = 0,$$

where C = 0 and A > B > 0 are the same as before.

The Hamiltonian of the new system has the form

$$H = \frac{1}{2} \left(\frac{f(u_1)}{u_1 - u_2} \tilde{p}_1^2 + \frac{f(u_2)}{u_2 - u_1} \tilde{p}_2^2 \right) - \frac{\mu}{\sqrt{u_2} - \sqrt{u_1}}.$$

Note that the electric potential can be written in Stäckel form as

$$U = -\frac{\mu}{\sqrt{u_2} - \sqrt{u_1}} = -\frac{\mu(\sqrt{u_2} + \sqrt{u_1})}{u_2 - u_1},$$

so that when magnetic charge is zero, then magnetic momenta $\tilde{p}_i = p_i$ and the system is separable and belongs to the class considered by **Kozlov and Harin**.

Dirac, 1929: in the quantum case the magnetic charge must be quantised: $2\nu \in \mathbb{Z}$. Geometrically this corresponds to the integrality of the first Chern class of U(1)-bundle over sphere with connection defined by the magnetic potential.

Dirac, 1929: in the quantum case the magnetic charge must be quantised: $2\nu \in \mathbb{Z}$. Geometrically this corresponds to the integrality of the first Chern class of U(1)-bundle over sphere with connection defined by the magnetic potential.

Consider vector fields $X_1=q_3\partial_2-q_2\partial_3,\ X_2=q_1\partial_3-q_3\partial_1,\ X_3=q_2\partial_1-q_1\partial_2$ and the corresponding covariant derivatives ∇_{X_j} .

Dirac, 1929: in the quantum case the magnetic charge must be quantised: $2\nu \in \mathbb{Z}$. Geometrically this corresponds to the integrality of the first Chern class of U(1)-bundle over sphere with connection defined by the magnetic potential.

Consider vector fields $X_1=q_3\partial_2-q_2\partial_3,\ X_2=q_1\partial_3-q_3\partial_1,\ X_3=q_2\partial_1-q_1\partial_2$ and the corresponding covariant derivatives ∇_{X_j} .

The modified operators $\hat{M}_{X_j} = i \nabla_j + \nu q_j$, satisfy the usual angular momentum relations (cf. Fierz, 1944): $[\hat{M}_k, \hat{M}_m] = i \epsilon_{kmn} \hat{M}_n$, $[\hat{M}_k, \hat{q}_m] = i \epsilon_{kmn} \hat{q}_n$.

Dirac, 1929: in the quantum case the magnetic charge must be quantised: $2\nu \in \mathbb{Z}$. Geometrically this corresponds to the integrality of the first Chern class of U(1)-bundle over sphere with connection defined by the magnetic potential.

Consider vector fields $X_1=q_3\partial_2-q_2\partial_3,\ X_2=q_1\partial_3-q_3\partial_1,\ X_3=q_2\partial_1-q_1\partial_2$ and the corresponding covariant derivatives ∇_{X_j} .

The modified operators $\hat{M}_{X_j} = i \nabla_j + \nu q_j$, satisfy the usual angular momentum relations (cf. Fierz, 1944): $[\hat{M}_k, \hat{M}_m] = i \epsilon_{kmn} \hat{M}_n$, $[\hat{M}_k, \hat{q}_m] = i \epsilon_{kmn} \hat{q}_n$.

The quantum Hamiltonian and integral have the form

$$\begin{split} \hat{H} &= \frac{1}{2} (\hat{M}_1^2 + \hat{M}_2^2 + \hat{M}_3^2) - \mu \frac{|q|}{\sqrt{R(q)}}, \ R(q) = (A - B)q_2^2 + (\sqrt{A}q_3 - \sqrt{B}|q|)^2, \\ \hat{F} &= A\hat{M}_1^2 + B\hat{M}_2^2 + \frac{2\sqrt{AB}}{|q|} (\hat{M}, q)\hat{M}_3 - 2\mu\sqrt{AB} \frac{q_3}{\sqrt{R(q)}}. \end{split}$$

Replace E(3) by the group E(2,1) of motion of pseudo-Euclidean space $\mathbb{R}^{2,1}$ with Lie algebra defined by

$$[M_1, M_2] = M_3, [M_2, M_3] = -M_1, [M_3, M_1] = -M_2,$$

$$[M_1, q_2] = q_3 = -[M_2, q_1], [M_1, q_3] = q_2 = -[M_3, q_1], [M_2, q_3] = -q_1 = -[M_3, q_2].$$

Replace E(3) by the group E(2,1) of motion of pseudo-Euclidean space $\mathbb{R}^{2,1}$ with Lie algebra defined by

$$[M_1, M_2] = M_3, [M_2, M_3] = -M_1, [M_3, M_1] = -M_2,$$

$$[M_1, q_2] = q_3 = -[M_2, q_1], [M_1, q_3] = q_2 = -[M_3, q_1], [M_2, q_3] = -q_1 = -[M_3, q_2].$$

The Casimir functions are

$$C_1 = (q, Jq) = -q_1^2 - q_2^2 + q_3^2 := ||q||^2, \ C_2 = \langle M, q \rangle := -M_1q_1 - M_2q_2 + M_3q_3.$$

The relation $C_1 = ||q||^2 = 1$ now defines the two-sheeted hyperboloid, one sheet of which presenting a model of the hyperbolic plane.

Replace E(3) by the group E(2,1) of motion of pseudo-Euclidean space $\mathbb{R}^{2,1}$ with Lie algebra defined by

$$[M_1, M_2] = M_3, [M_2, M_3] = -M_1, [M_3, M_1] = -M_2,$$

$$[M_1, q_2] = q_3 = -[M_2, q_1], [M_1, q_3] = q_2 = -[M_3, q_1], [M_2, q_3] = -q_1 = -[M_3, q_2].$$

The Casimir functions are

$$C_1 = (q, Jq) = -q_1^2 - q_2^2 + q_3^2 := ||q||^2, \ C_2 = \langle M, q \rangle := -M_1q_1 - M_2q_2 + M_3q_3.$$

The relation $C_1 = ||q||^2 = 1$ now defines the two-sheeted hyperboloid, one sheet of which presenting a model of the hyperbolic plane.

The Hamiltonian of the natural hyperbolic analogue of the new system is

$$H = \frac{1}{2}(M_1^2 + M_2^2 - M_3^2) + \frac{\mu||q||}{\sqrt{R(q)}}, \ R(q) = (B - A)q_2^2 + (\sqrt{A}q_3 - \sqrt{B}||q||)^2$$

having two singularities at the points $(\pm \frac{\sqrt{B-A}}{\sqrt{A}}, 0, \frac{\sqrt{B}}{\sqrt{A}})$.

Replace E(3) by the group E(2,1) of motion of pseudo-Euclidean space $\mathbb{R}^{2,1}$ with Lie algebra defined by

$$[M_1, M_2] = M_3, [M_2, M_3] = -M_1, [M_3, M_1] = -M_2,$$

$$[M_1, q_2] = q_3 = -[M_2, q_1], [M_1, q_3] = q_2 = -[M_3, q_1], [M_2, q_3] = -q_1 = -[M_3, q_2].$$

The Casimir functions are

$$C_1 = (q, Jq) = -q_1^2 - q_2^2 + q_3^2 := ||q||^2, \ C_2 = \langle M, q \rangle := -M_1q_1 - M_2q_2 + M_3q_3.$$

The relation $C_1 = ||q||^2 = 1$ now defines the two-sheeted hyperboloid, one sheet of which presenting a model of the hyperbolic plane.

The Hamiltonian of the natural hyperbolic analogue of the new system is

$$H = \frac{1}{2}(M_1^2 + M_2^2 - M_3^2) + \frac{\mu||q||}{\sqrt{R(q)}}, \ R(q) = (B - A)q_2^2 + (\sqrt{A}q_3 - \sqrt{B}||q||)^2$$

having two singularities at the points $(\pm \frac{\sqrt{B-A}}{\sqrt{A}}, 0, \frac{\sqrt{B}}{\sqrt{A}})$.

The corresponding additional integral has the form

$$F = A{M_1}^2 + B{M_2}^2 - 2\frac{\sqrt{AB}}{||q||}\langle M, q \rangle M_3 + 2\frac{\mu\sqrt{AB}q_3}{\sqrt{R(q)}}.$$

► Analysis of the orbits in the new system (cf. classical case in Albouy, 2003; Borisov and Mamaev, 2005; Gonzalez Leon et al, 2017)

- ► Analysis of the orbits in the new system (cf. classical case in Albouy, 2003; Borisov and Mamaev, 2005; Gonzalez Leon et al, 2017)
- ▶ The spectral properties of the quantum system

- Analysis of the orbits in the new system (cf. classical case in Albouy, 2003; Borisov and Mamaev, 2005; Gonzalez Leon et al, 2017)
- ▶ The spectral properties of the quantum system
- Separation of variables (cf. for Clebsch system Magri and Skrypnik, 2015)

- Analysis of the orbits in the new system (cf. classical case in Albouy, 2003;
 Borisov and Mamaev, 2005; Gonzalez Leon et al, 2017)
- ▶ The spectral properties of the quantum system
- Separation of variables (cf. for Clebsch system Magri and Skrypnik, 2015)
- ► Flat version?

- Analysis of the orbits in the new system (cf. classical case in Albouy, 2003; Borisov and Mamaev, 2005; Gonzalez Leon et al, 2017)
- ▶ The spectral properties of the quantum system
- Separation of variables (cf. for Clebsch system Magri and Skrypnik, 2015)
- ► Flat version?

Reference

A.P. Veselov, Y. Ye New integrable two-centre problem on sphere in Dirac magnetic field. arXiv:1907.06174.

Многая лета, Валерий Васильевич!

