The Ergodic Theorem in the Kozlov–Treschev Form V.I. Bogachev (MSU+HSE)

SOME CLASSICS:

 (X, \mathcal{A}, μ) a probability space $g_t \colon X \to X$ measure preserving, $t \geq 0$, $g_t g_s = g_{t+s}, \ g_0 = Id, \ g_t(x)$ measurable in (t, x) THEN for any μ -integrable f a.e. and in $L^1(\mu)$

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t f(g_s(x))\,ds=\overline{f}(x)$$

where \overline{f} conditional expectation of f w.r.t. σ -algebra \mathcal{I} generated by all g_t -invariant functions

Kozlov V.V., Treschev D.V.: On new forms of the ergodic theorem. J. Dynam. Control Syst. 2003. V. 9, N 3.

 $\nu=\varrho(s)\,ds$ absolutely continuous probability measure on $[0,+\infty)$

BOUNDED f:

$$\lim_{t\to\infty}\int_0^{+\infty}f(g_{ts}(x))\,\nu(ds)=\overline{f}(x),\qquad (KT)$$

 \overline{f} conditional expectation of f w.r.t. σ -algebra \mathcal{I} generated by all g_t -invariant functions Classics: $\nu = \text{Lebesgue on } [0,1], \ \varrho(s) = I_{[0,1]}(s)$

Bogachev V.I., Korolev A.V. On the ergodic theorem in the Kozlov–Treshchev form. Dokl. Math. 75:1 (2007)

Bogachev V.I., Korolev A.V., Pilipenko A.Yu. Nonuniform averagings in the ergodic theorem for stochastic flows. Dokl. Math. 81:3 (2010) Korolev A.V. On the ergodic theorem in the Kozlov–Treshchev form for an operator semigroup. Ukr. Math. J. 62:5 (2010)

Korolev A.V. On the convergence of nonuniform ergodic means. Math. Notes 87:5-6 (2010) Kuzemsky A.L. Irreversible evolution of open systems and the nonequilibrium statistical operator method. arXiv:1911.13203v1

Generalizations of Kozlov-Treschev:

UNBOUNDED *f*

DYNAMICS OF MEASURES $\nu_{t,x}$ =image of ν

under
$$S_{t,x}$$
: $[0,+\infty) \to X$:

$$S_{t,x}(s)=g_{ts}(x),$$

$$\nu_{t,x}(A) = \nu(S_{t,x}^{-1}(A))$$

STOCHASTIC SYSTEMS:

$$d\xi_t^x = A(\xi_t^x)dW_t + b(\xi_t^x)dt, \quad \xi_0^x = x$$

$$F_t(x, w) = \int_0^\infty f(\xi_{ts}^x(w)) \, \nu(ds)$$

EXAMPLE. $X = S^1$, μ Lebesgue, g_t rotations,

$$f(z) = |\sin \theta|^{-1} (\ln |\sin \theta| - 1)^{-2},$$

$$z = \exp(i\theta), \ \theta \in [0, 2\pi)$$

One can find integrable ϱ on $[0, +\infty)$ and f on X such that

$$\limsup_{n} \int_{0}^{+\infty} f(g_{ns}(x)) \varrho(s) ds = +\infty$$

The effect due to $|\theta - n/k| \le k^{-2}$ for infinitely many pairs n, k.

Theorem 1. $f \in L^p(\mu)$, $p \in [1, +\infty)$, $\varrho \in L^q[0, +\infty)$, 1/p + 1/q = 1. If ϱ has bounded support, then (KT) holds for a.e. x.

More generally, this is true if

$$\varrho(s) \leq \beta(s), \quad s \geq s_0,$$

 $\beta \in L^q[0, +\infty)$ monotone decreasing ??? IS BOUNDED SUPPORT IMPORTANT???

Dynamics of $\nu_{t,x}$:

Theorem 2. X Souslin space, μ Borel probability measure on X, $\{g_t\}$ ergodic. Then

 $\nu_{t, {\sf x}} \quad \text{converges weakly to } \mu \text{ as } t \to +\infty$ for $\mu\text{-a.e. } {\sf x}.$

Theorem 3. Under the same assumptions, for each $\varepsilon > 0$ there is a compact set $K \subset X$ with

$$\mu(K) > 1 - \varepsilon$$

such that the family of measures

$$\{\nu_{t,x}\colon t\geq \varepsilon,\ x\in K\}$$

is uniformly tight, i.e. for each $\delta>0$ there is a compact set Q_{δ} with $\nu_{t,\mathbf{x}}(Q_{\delta})>1-\delta$ for all these measures.

$\varepsilon > 0$ is important:

$$\nu_{0,x} = \delta_x$$
 Dirac's mass at x

Stochastic case:
$$Lf = \operatorname{trace}(AD^2f)/2 + \langle b, \nabla f \rangle$$

Diffusion matrix A locally Lipschitz, nondegenerate, drift b Borel, locally bounded,

there is a Lyapunov function V: as $|x| \to \infty$ we have $V(x) \to +\infty$ and $LV(x) \to -\infty$.

Then there is an invariant probability measure μ for this diffusion.

P be Wiener measure on the path space $W = C([0, +\infty), \mathbb{R}^d)$.

Theorem 4. f bounded Borel measurable. Then for each x

$$\lim_{t\to+\infty}\int_0^{+\infty}f(\xi_{ts}^{\mathsf{x}}(w))\varrho(s)\,ds=\int_{\mathbb{R}^d}f(y)\,\mu(dy)$$

for P-a.e. $w \in W$.

V. I. Bogachev

1

Measure Theory

