On the stochasticity parameter of quadratic residues

Mikhail Gabdullin

Colloquium of the Steklov Mathematical Institute

Moscow, 5th of March

The plan

- I. The stochasticity parameter
- II. Quadratic residues
- III. The stochasticity parameter of quadratic residues

Let $\mathbb{T}_n=\mathbb{R}/n\mathbb{Z}$ be the circle of length n. Let $k\in\mathbb{N}$ and $U=\{0\leqslant u_1< u_2< ...< u_k< n\}$ be a k-element subset of \mathbb{T}_n .

Denote by $s_i = u_{i+1} - u_i \in \mathbb{R}^+$, i = 1, ..., k, consecutive distances between elements of U (we set $s_k = u_1 + n - u_k$).

Following V.I.Arnold, define the stochasticity parameter S(U) of the set U to be

$$S(U) = \sum_{i=1}^{k} s_i^2.$$

Since $\frac{n}{k} = \frac{1}{k} \sum_{i=1}^k s_i \leqslant \left(\frac{1}{k} \sum_{i=1}^k s_i^2\right)^{1/2}$ and $\sum_{i=1}^k s_i^2 < \left(\sum_{i=1}^k s_i\right)^2 = n^2$, it follows that

$$\inf_{|U|=k} S(U) = \frac{n^2}{k}$$

$$\sup_{U|=k} S(U) = n^2.$$

Let $\mathbb{T}_n=\mathbb{R}/n\mathbb{Z}$ be the circle of length n. Let $k\in\mathbb{N}$ and $U=\{0\leqslant u_1< u_2< ...< u_k< n\}$ be a k-element subset of \mathbb{T}_n .

Denote by $s_i = u_{i+1} - u_i \in \mathbb{R}^+$, i = 1, ..., k, consecutive distances between elements of U (we set $s_k = u_1 + n - u_k$).

Following V.I.Arnold, define the stochasticity parameter S(U) of the set U to be

$$S(U) = \sum_{i=1}^{k} s_i^2.$$

Since $\frac{n}{k} = \frac{1}{k} \sum_{i=1}^k s_i \leqslant \left(\frac{1}{k} \sum_{i=1}^k s_i^2\right)^{1/2}$ and $\sum_{i=1}^k s_i^2 < \left(\sum_{i=1}^k s_i\right)^2 = n^2$, it follows that

$$\inf_{|U|=k} S(U) = \frac{n^2}{k}$$

$$\sup_{U|=k} S(U) = n^2.$$

Let $\mathbb{T}_n=\mathbb{R}/n\mathbb{Z}$ be the circle of length n. Let $k\in\mathbb{N}$ and $U=\{0\leqslant u_1< u_2< ...< u_k< n\}$ be a k-element subset of \mathbb{T}_n .

Denote by $s_i = u_{i+1} - u_i \in \mathbb{R}^+$, i = 1, ..., k, consecutive distances between elements of U (we set $s_k = u_1 + n - u_k$).

Following V.I.Arnold, define the stochasticity parameter S(U) of the set U to be

$$S(U) = \sum_{i=1}^{k} s_i^2.$$

Since $\frac{n}{k}=\frac{1}{k}\sum_{i=1}^k s_i\leqslant \left(\frac{1}{k}\sum_{i=1}^k s_i^2\right)^{1/2}$ and $\sum_{i=1}^k s_i^2<\left(\sum_{i=1}^k s_i\right)^2=n^2$, it follows that

$$\inf_{|U|=k} S(U) = \frac{n^2}{k}$$

$$\sup_{|U|=k} S(U) = n^2.$$

Let $\mathbb{T}_n=\mathbb{R}/n\mathbb{Z}$ be the circle of length n. Let $k\in\mathbb{N}$ and $U=\{0\leqslant u_1< u_2< ...< u_k< n\}$ be a k-element subset of \mathbb{T}_n .

Denote by $s_i = u_{i+1} - u_i \in \mathbb{R}^+$, i = 1, ..., k, consecutive distances between elements of U (we set $s_k = u_1 + n - u_k$).

Following V.I.Arnold, define the stochasticity parameter S(U) of the set U to be

$$S(U) = \sum_{i=1}^{k} s_i^2.$$

Since $\frac{n}{k}=\frac{1}{k}\sum_{i=1}^k s_i\leqslant \left(\frac{1}{k}\sum_{i=1}^k s_i^2\right)^{1/2}$ and $\sum_{i=1}^k s_i^2<\left(\sum_{i=1}^k s_i\right)^2=n^2$, it follows that

$$\inf_{|U|=k} S(U) = \frac{n^2}{k}$$

$$\sup_{|U|=k} S(U) = n^2$$

Let $\mathbb{T}_n=\mathbb{R}/n\mathbb{Z}$ be the circle of length n. Let $k\in\mathbb{N}$ and $U=\{0\leqslant u_1< u_2< ...< u_k< n\}$ be a k-element subset of \mathbb{T}_n .

Denote by $s_i = u_{i+1} - u_i \in \mathbb{R}^+$, i = 1, ..., k, consecutive distances between elements of U (we set $s_k = u_1 + n - u_k$).

Following V.I.Arnold, define the stochasticity parameter S(U) of the set U to be

$$S(U) = \sum_{i=1}^{k} s_i^2.$$

Since $\frac{n}{k}=\frac{1}{k}\sum_{i=1}^k s_i\leqslant \left(\frac{1}{k}\sum_{i=1}^k s_i^2\right)^{1/2}$ and $\sum_{i=1}^k s_i^2<\left(\sum_{i=1}^k s_i\right)^2=n^2$, it follows that

$$\inf_{|U|=k} S(U) = \frac{n^2}{k}$$

$$\sup_{|U|=k} S(U) = n^2$$

Let $\mathbb{T}_n=\mathbb{R}/n\mathbb{Z}$ be the circle of length n. Let $k\in\mathbb{N}$ and $U=\{0\leqslant u_1< u_2< ...< u_k< n\}$ be a k-element subset of \mathbb{T}_n .

Denote by $s_i = u_{i+1} - u_i \in \mathbb{R}^+$, i = 1, ..., k, consecutive distances between elements of U (we set $s_k = u_1 + n - u_k$).

Following V.I.Arnold, define the stochasticity parameter S(U) of the set U to be

$$S(U) = \sum_{i=1}^{k} s_i^2.$$

Since $\frac{n}{k}=\frac{1}{k}\sum_{i=1}^k s_i\leqslant \left(\frac{1}{k}\sum_{i=1}^k s_i^2\right)^{1/2}$ and $\sum_{i=1}^k s_i^2<\left(\sum_{i=1}^k s_i\right)^2=n^2$, it follows that

$$\inf_{|U|=k} S(U) = \frac{n^2}{k}$$

$$\sup_{|U|=k} S(U) = n^2.$$

Fix k and let U be a random subset of \mathbb{T}_n (we throw k points on \mathbb{T}_n uniformly at random). Then for each i and $t \in (0,n)$ we have

$$\mathbb{P}(s_i > t) = \mathbb{P}(s_1 > t) = \left(\frac{n-t}{n}\right)^{k-1}$$

and, hence

$$\mathbb{E}s_i = \int_0^n \mathbb{P}(s_i > t) dt = \int_0^n (1 - t/n)^{k-1} dt = n \int_0^1 (1 - v)^{k-1} dv = n \int_0^1 v^{k-1} dv = n/k$$

(as should be, because $\mathbb{E}(\sum_{i=1}^k s_i) = n$) and

$$\mathbb{E} s_i^2 = \int\limits_0^n 2t \cdot \mathbb{P}\left(s_i > t\right) dt = \int\limits_0^n 2t (1 - t/n)^{k-1} dt = 2n^2 \int\limits_0^1 v (1 - v)^{k-1} dv = \frac{2n^2}{k(k+1)},$$

and, hence

$$\mathbb{E}S(U) = \frac{2n^2}{k+1}$$

Fix k and let U be a random subset of \mathbb{T}_n (we throw k points on \mathbb{T}_n uniformly at random). Then for each i and $t\in(0,n)$ we have

$$\mathbb{P}(s_i > t) = \mathbb{P}(s_1 > t) = \left(\frac{n-t}{n}\right)^{k-1}$$

and, hence,

$$\mathbb{E}s_i = \int_0^n \mathbb{P}(s_i > t) dt = \int_0^n (1 - t/n)^{k-1} dt = n \int_0^1 (1 - v)^{k-1} dv = n \int_0^1 v^{k-1} dv = n/k$$

(as should be, because $\mathbb{E}(\sum_{i=1}^k s_i) = n)$ and

$$\mathbb{E} s_i^2 = \int\limits_0^n 2t \cdot \mathbb{P}\left(s_i > t\right) dt = \int\limits_0^n 2t (1 - t/n)^{k-1} dt = 2n^2 \int\limits_0^1 v (1 - v)^{k-1} dv = \frac{2n^2}{k(k+1)},$$

and, hence,

$$\mathbb{E}S(U) = \frac{2n^2}{k+1}$$

Fix k and let U be a random subset of \mathbb{T}_n (we throw k points on \mathbb{T}_n uniformly at random). Then for each i and $t\in(0,n)$ we have

$$\mathbb{P}(s_i > t) = \mathbb{P}(s_1 > t) = \left(\frac{n-t}{n}\right)^{k-1}$$

and, hence,

$$\mathbb{E}s_i = \int_0^n \mathbb{P}(s_i > t) dt = \int_0^n (1 - t/n)^{k-1} dt = n \int_0^1 (1 - v)^{k-1} dv = n \int_0^1 v^{k-1} dv = n/k$$

(as should be, because $\mathbb{E}(\sum_{i=1}^k s_i) = n)$ and

$$\mathbb{E} s_i^2 = \int\limits_0^n 2t \cdot \mathbb{P}\left(s_i > t\right) dt = \int\limits_0^n 2t (1 - t/n)^{k-1} dt = 2n^2 \int\limits_0^1 v (1 - v)^{k-1} dv = \frac{2n^2}{k(k+1)},$$

and, hence,

$$\mathbb{E}S(U) = \frac{2n^2}{k+1}$$

Fix k and let U be a random subset of \mathbb{T}_n (we throw k points on \mathbb{T}_n uniformly at random). Then for each i and $t\in(0,n)$ we have

$$\mathbb{P}(s_i > t) = \mathbb{P}(s_1 > t) = \left(\frac{n-t}{n}\right)^{k-1}$$

and, hence,

$$\mathbb{E}s_i = \int_0^n \mathbb{P}(s_i > t) dt = \int_0^n (1 - t/n)^{k-1} dt = n \int_0^1 (1 - v)^{k-1} dv = n \int_0^1 v^{k-1} dv = n/k$$

(as should be, because $\mathbb{E}(\sum_{i=1}^k s_i) = n)$ and

$$\mathbb{E} s_i^2 = \int\limits_0^n 2t \cdot \mathbb{P}\left(s_i > t\right) dt = \int\limits_0^n 2t (1 - t/n)^{k-1} dt = 2n^2 \int\limits_0^1 v (1 - v)^{k-1} dv = \frac{2n^2}{k(k+1)},$$

and, hence

$$\mathbb{E}S(U) = \frac{2n^2}{k+1}$$

Fix k and let U be a random subset of \mathbb{T}_n (we throw k points on \mathbb{T}_n uniformly at random). Then for each i and $t\in(0,n)$ we have

$$\mathbb{P}(s_i > t) = \mathbb{P}(s_1 > t) = \left(\frac{n-t}{n}\right)^{k-1}$$

and, hence,

$$\mathbb{E}s_i = \int_0^n \mathbb{P}(s_i > t) dt = \int_0^n (1 - t/n)^{k-1} dt = n \int_0^1 (1 - v)^{k-1} dv = n \int_0^1 v^{k-1} dv = n/k$$

(as should be, because $\mathbb{E}(\sum_{i=1}^k s_i) = n)$ and

$$\mathbb{E} s_i^2 = \int\limits_0^n 2t \cdot \mathbb{P}\left(s_i > t\right) dt = \int\limits_0^n 2t (1 - t/n)^{k-1} dt = 2n^2 \int\limits_0^1 v (1 - v)^{k-1} dv = \frac{2n^2}{k(k+1)},$$

and, hence,

$$\mathbb{E}S(U) = \frac{2n^2}{k+1}.$$

$s_i/\mathbb{E}s_i \sim \text{Exp}(1)$

We see that

$$\mathbb{P}(s_i > t\mathbb{E}s_i) = \mathbb{P}(s_i > tn/k) = (1 - t/k)^{k-1} = e^{-t}(1 + o(1)), \quad k \to \infty,$$

uniformly for $0\leqslant t\leqslant t_0$ for any fixed t_0 , and so for large k the normalized gaps $\tilde{s_i}=s_i/\mathbb{E}s_i$ have the exponential distribution with parameter 1.

Hence, the function $N(t)=\#\{i:u_i\leqslant t\}$ behaves like the Poisson point process with constant rate 1 and the number N(a,b) of points u_i in an interval (a,b] has Poisson distribution with mean b-a.

$s_i/\mathbb{E}s_i \sim \operatorname{Exp}(1)$

We see that

$$\mathbb{P}(s_i > t\mathbb{E}s_i) = \mathbb{P}(s_i > tn/k) = (1 - t/k)^{k-1} = e^{-t}(1 + o(1)), \quad k \to \infty,$$

uniformly for $0\leqslant t\leqslant t_0$ for any fixed t_0 , and so for large k the normalized gaps $\tilde{s_i}=s_i/\mathbb{E}s_i$ have the exponential distribution with parameter 1.

Hence, the function $N(t)=\#\{i:u_i\leqslant t\}$ behaves like the Poisson point process with constant rate 1 and the number N(a,b) of points u_i in an interval (a,b] has Poisson distribution with mean b-a.

Let $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$. Let $k \in \mathbb{N}$ and $U = \{0 \leqslant u_1 < u_2 < ... < u_k < n\}$ be a k-element subset of \mathbb{T}_n .

Denote by $s_i = u_{i+1} - u_i \in \mathbb{N}$, i = 1, ..., k, consecutive distances between elements of U (we set $s_k = u_1 + n - u_k$).

As before, define the stochaticity parameter of the set U to be the quantity

$$S(U) = \sum_{i=1}^{k} s_i^2,$$

$$\frac{n^2}{k} \leqslant S(U) \leqslant n^2$$

Let $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$. Let $k \in \mathbb{N}$ and $U = \{0 \leqslant u_1 < u_2 < ... < u_k < n\}$ be a k-element subset of \mathbb{T}_n .

Denote by $s_i = u_{i+1} - u_i \in \mathbb{N}, i = 1, ..., k$, consecutive distances between elements of U (we set $s_k = u_1 + n - u_k$).

As before, define the stochaticity parameter of the set U to be the quantity

$$S(U) = \sum_{i=1}^{k} s_i^2,$$

$$\frac{n^2}{k} \leqslant S(U) \leqslant n^2$$

Let $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$. Let $k \in \mathbb{N}$ and $U = \{0 \leqslant u_1 < u_2 < ... < u_k < n\}$ be a k-element subset of \mathbb{T}_n .

Denote by $s_i = u_{i+1} - u_i \in \mathbb{N}$, i = 1, ..., k, consecutive distances between elements of U (we set $s_k = u_1 + n - u_k$).

As before, define the stochaticity parameter of the set U to be the quantity

$$S(U) = \sum_{i=1}^{k} s_i^2,$$

$$\frac{n^2}{k} \leqslant S(U) \leqslant n^2$$

Let $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$. Let $k \in \mathbb{N}$ and $U = \{0 \leqslant u_1 < u_2 < ... < u_k < n\}$ be a k-element subset of \mathbb{T}_n .

Denote by $s_i = u_{i+1} - u_i \in \mathbb{N}$, i = 1, ..., k, consecutive distances between elements of U (we set $s_k = u_1 + n - u_k$).

As before, define the stochaticity parameter of the set U to be the quantity

$$S(U) = \sum_{i=1}^{k} s_i^2,$$

$$\frac{n^2}{k} \leqslant S(U) \leqslant n^2.$$

It is easy to see that S(U) is minimal when s_i are equal (or close) to n/k, and is maximal when U is an interval of length k (so $\max_{|U|=k} S(U) = (n-k+1)^2 + k - 1$).

So too small or too large values of S(U) indicate that U is far from a random set

One can find the mean value s(k)=s(M,k) of S(U) over all k-element subsets of \mathbb{Z}_M .

Proposition 1. We have

$$s(k) = M \frac{2M - k + 1}{k + 1}$$
.

Note that $s(k) \sim \frac{2M^2}{k+1}$ whenever k = o(M).

(Recall that in the case $\mathbb{R}/n\mathbb{Z}$ we have $\mathbb{E}S(U)=rac{2n^2}{k+1}$.)

It is easy to see that S(U) is minimal when s_i are equal (or close) to n/k, and is maximal when U is an interval of length k (so $\max_{|U|=k} S(U) = (n-k+1)^2 + k - 1$).

So too small or too large values of S(U) indicate that U is far from a random set.

One can find the mean value s(k)=s(M,k) of S(U) over all k-element subsets of \mathbb{Z}_M .

Proposition 1. We have

$$s(k) = M \frac{2M - k + 1}{k + 1}$$
.

Note that $s(k) \sim \frac{2M^2}{k+1}$ whenever k = o(M).

(Recall that in the case $\mathbb{R}/n\mathbb{Z}$ we have $\mathbb{E}S(U)=rac{2n^2}{k+1}$.)

It is easy to see that S(U) is minimal when s_i are equal (or close) to n/k, and is maximal when U is an interval of length k (so $\max_{|U|=k} S(U) = (n-k+1)^2 + k - 1$).

So too small or too large values of S(U) indicate that U is far from a random set.

One can find the mean value s(k)=s(M,k) of S(U) over all k-element subsets of \mathbb{Z}_M .

Proposition 1. We have

$$s(k) = M \frac{2M - k + 1}{k + 1}$$
.

Note that $s(k) \sim \frac{2M^2}{k+1}$ whenever k = o(M).

(Recall that in the case $\mathbb{R}/n\mathbb{Z}$ we have $\mathbb{E}S(U)=\frac{2n^2}{k+1}$.

It is easy to see that S(U) is minimal when s_i are equal (or close) to n/k, and is maximal when U is an interval of length k (so $\max_{|U|=k} S(U) = (n-k+1)^2 + k - 1$).

So too small or too large values of S(U) indicate that U is far from a random set.

One can find the mean value s(k)=s(M,k) of S(U) over all k-element subsets of \mathbb{Z}_M .

Proposition 1. We have

$$s(k) = M \frac{2M - k + 1}{k + 1}$$
.

Note that $s(k) \sim \frac{2M^2}{k+1}$ whenever k = o(M).

(Recall that in the case $\mathbb{R}/n\mathbb{Z}$ we have $\mathbb{E}S(U)=\frac{2n^2}{k+1}$.)

It is easy to see that S(U) is minimal when s_i are equal (or close) to n/k, and is maximal when U is an interval of length k (so $\max_{|U|=k} S(U) = (n-k+1)^2 + k - 1$).

So too small or too large values of S(U) indicate that U is far from a random set.

One can find the mean value s(k)=s(M,k) of S(U) over all k-element subsets of \mathbb{Z}_M .

Proposition 1. We have

$$s(k) = M \frac{2M - k + 1}{k + 1}$$
.

Note that $s(k) \sim \frac{2M^2}{k+1}$ whenever k = o(M).

(Recall that in the case $\mathbb{R}/n\mathbb{Z}$ we have $\mathbb{E}S(U)=rac{2n^2}{k+1}$.)

It is easy to see that S(U) is minimal when s_i are equal (or close) to n/k, and is maximal when U is an interval of length k (so $\max_{|U|=k} S(U) = (n-k+1)^2 + k - 1$).

So too small or too large values of S(U) indicate that U is far from a random set.

One can find the mean value s(k)=s(M,k) of S(U) over all k-element subsets of \mathbb{Z}_M .

Proposition 1. We have

$$s(k) = M \frac{2M - k + 1}{k + 1}$$
.

Note that $s(k) \sim \frac{2M^2}{k+1}$ whenever k = o(M).

(Recall that in the case $\mathbb{R}/n\mathbb{Z}$ we have $\mathbb{E}S(U)=rac{2n^2}{k+1}$.)

Recall that an element $x\in\mathbb{Z}_n$ is called a quadratic residue if there is $y\in\mathbb{Z}_n$ with $x=y^2$. Let R_n be the set of quadratic residues modulo n.

If $p\geqslant 2$ is a prime, then there are (p+1)/2 quadratic residues modulo p: they are exactly

$$0^2, 1^2, 2^2, ..., \left(\frac{p-1}{2}\right)^2$$

(since $k^2=(p-k)^2$ and if $0\leqslant a< b\leqslant (p-1)/2$, then $(a-b)(a+b)\neq 0$ in \mathbb{Z}_p)

Also it is easy to show that

$$\frac{p^{r-1}(p-1)}{2} \leqslant |R_{p^k}| \leqslant \frac{p^{r-1}(p+1)}{2}$$

The function $|R_n|$ is multiplicative, that is, $|R_{nm}|=|R_n||R_m|$ whenever (n,m)=1 (because of the Chinese Remainder Theorem).

Recall that an element $x\in\mathbb{Z}_n$ is called a quadratic residue if there is $y\in\mathbb{Z}_n$ with $x=y^2$. Let R_n be the set of quadratic residues modulo n.

If $p\geqslant 2$ is a prime, then there are (p+1)/2 quadratic residues modulo p: they are exactly

$$0^2, 1^2, 2^2, ..., \left(\frac{p-1}{2}\right)^2$$

(since $k^2 = (p-k)^2$ and if $0 \le a < b \le (p-1)/2$, then $(a-b)(a+b) \ne 0$ in \mathbb{Z}_p).

Also it is easy to show that

$$\frac{p^{r-1}(p-1)}{2} \leqslant |R_{p^k}| \leqslant \frac{p^{r-1}(p+1)}{2}$$

The function $|R_n|$ is multiplicative, that is, $|R_{nm}| = |R_n||R_m|$ whenever (n,m) = 1 (because of the Chinese Remainder Theorem).

Recall that an element $x\in\mathbb{Z}_n$ is called a quadratic residue if there is $y\in\mathbb{Z}_n$ with $x=y^2$. Let R_n be the set of quadratic residues modulo n.

If $p\geqslant 2$ is a prime, then there are (p+1)/2 quadratic residues modulo p: they are exactly

$$0^2, 1^2, 2^2, ..., \left(\frac{p-1}{2}\right)^2$$

(since $k^2 = (p-k)^2$ and if $0 \leqslant a < b \leqslant (p-1)/2$, then $(a-b)(a+b) \neq 0$ in \mathbb{Z}_p).

Also it is easy to show that

$$\frac{p^{r-1}(p-1)}{2}\leqslant |R_{p^k}|\leqslant \frac{p^{r-1}(p+1)}{2}$$

The function $|R_n|$ is multiplicative, that is, $|R_{nm}| = |R_n||R_m|$ whenever (n,m) = 1 (because of the Chinese Remainder Theorem).

Recall that an element $x\in\mathbb{Z}_n$ is called a quadratic residue if there is $y\in\mathbb{Z}_n$ with $x=y^2$. Let R_n be the set of quadratic residues modulo n.

If $p\geqslant 2$ is a prime, then there are (p+1)/2 quadratic residues modulo p: they are exactly

$$0^2, 1^2, 2^2, ..., \left(\frac{p-1}{2}\right)^2$$

(since $k^2 = (p-k)^2$ and if $0 \leqslant a < b \leqslant (p-1)/2$, then $(a-b)(a+b) \neq 0$ in \mathbb{Z}_p).

Also it is easy to show that

$$\frac{p^{r-1}(p-1)}{2}\leqslant |R_{p^k}|\leqslant \frac{p^{r-1}(p+1)}{2}$$

The function $|R_n|$ is multiplicative, that is, $|R_{nm}|=|R_n||R_m|$ whenever (n,m)=1 (because of the Chinese Remainder Theorem).

Denote by $\omega(n) = \sum_{p|n} 1$ the number of prime divisors of n.

We see that

$$\frac{n}{|R_n|} = \prod_{p|n} \left(2 + O(1/p)\right)$$

and

$$rac{n}{R_n|} o\infty$$
 if and only if $\omega(n) o\infty$

Note that if n is taken from $[1,x]\in\mathbb{Z}$ uniformly at random, then

$$\mathbb{E}\omega(n) = \log\log x + O(1)$$

and

$$\operatorname{Var}\omega(n) \leq \log\log x + O(1).$$

Then by Chebyshev's inequality we obtain a theorem of Hardy and Ramanujan: if $f(x) \to \infty$ as $x \to \infty$, then

$$\omega(n) = \log \log x + O(f(x)\sqrt{\log \log x})$$

for all but o(x) numbers $n \leqslant x$

Denote by $\omega(n) = \sum_{p|n} 1$ the number of prime divisors of n. We see that

$$\frac{n}{|R_n|} = \prod_{p|n} (2 + O(1/p))$$

and

$$rac{n}{R_n|} o\infty$$
 if and only if $\omega(n) o\infty.$

Note that if n is taken from $[1,x]\in\mathbb{Z}$ uniformly at random, then

$$\mathbb{E}\omega(n) = \log\log x + O(1)$$

and

$$\operatorname{Var}\omega(n) \leq \log\log x + O(1).$$

Then by Chebyshev's inequality we obtain a theorem of Hardy and Ramanujan: if $f(x) \to \infty$ as $x \to \infty$, then

$$\omega(n) = \log \log x + O(f(x)\sqrt{\log \log x})$$

for all but o(x) numbers $n \leqslant x$



Denote by $\omega(n) = \sum_{p|n} 1$ the number of prime divisors of n.

We see that

$$\frac{n}{|R_n|} = \prod_{p|n} (2 + O(1/p))$$

and

$$rac{n}{|R_n|} o \infty$$
 if and only if $\omega(n) o \infty$.

Note that if n is taken from $[1,x]\in\mathbb{Z}$ uniformly at random, then

$$\mathbb{E}\omega(n) = \log\log x + O(1)$$

and

$$\operatorname{Var}\omega(n) \leq \log\log x + O(1).$$

Then by Chebyshev's inequality we obtain a theorem of Hardy and Ramanujan: if $f(x) \to \infty$ as $x \to \infty$, then

$$\omega(n) = \log \log x + O(f(x)\sqrt{\log \log x})$$

for all but o(x) numbers $n \leq x$

Denote by $\omega(n) = \sum_{p|n} 1$ the number of prime divisors of n.

We see that

$$\frac{n}{|R_n|} = \prod_{p|n} (2 + O(1/p))$$

and

$$rac{n}{|R_n|} o \infty$$
 if and only if $\omega(n) o \infty$.

Note that if n is taken from $[1,x]\in\mathbb{Z}$ uniformly at random, then

$$\mathbb{E}\omega(n) = \log\log x + O(1)$$

and

$$\operatorname{Var}\omega(n) \leq \log\log x + O(1).$$

Then by Chebyshev's inequality we obtain a theorem of Hardy and Ramanujan: if $f(x) \to \infty$ as $x \to \infty$, then

$$\omega(n) = \log \log x + O(f(x)\sqrt{\log \log x})$$

for all but o(x) numbers $n \leq x$.

Denote by $\omega(n) = \sum_{p|n} 1$ the number of prime divisors of n.

We see that

$$\frac{n}{|R_n|} = \prod_{p|n} (2 + O(1/p))$$

and

$$rac{n}{|R_n|} o \infty$$
 if and only if $\omega(n) o \infty$.

Note that if n is taken from $[1,x]\in\mathbb{Z}$ uniformly at random, then

$$\mathbb{E}\omega(n) = \log\log x + O(1)$$

and

$$\operatorname{Var}\omega(n) \leq \log\log x + O(1)$$

Then by Chebyshev's inequality we obtain a theorem of Hardy and Ramanujan: if $f(x) o \infty$ as $x o \infty$, then

$$\omega(n) = \log \log x + O(f(x)\sqrt{\log \log x})$$

for all but o(x) numbers $n \leq x$

Denote by $\omega(n) = \sum_{p|n} 1$ the number of prime divisors of n.

We see that

$$\frac{n}{|R_n|} = \prod_{p|n} (2 + O(1/p))$$

and

$$rac{n}{|R_n|} o \infty$$
 if and only if $\omega(n) o \infty$.

Note that if n is taken from $[1,x]\in\mathbb{Z}$ uniformly at random, then

$$\mathbb{E}\omega(n) = \log\log x + O(1)$$

and

$$\operatorname{Var} \omega(n) \leq \log \log x + O(1).$$

Then by Chebyshev's inequality we obtain a theorem of Hardy and Ramanujan: if $f(x) \to \infty$ as $x \to \infty$, then

$$\omega(n) = \log \log x + O(f(x)\sqrt{\log \log x})$$

for all but o(x) numbers $n\leqslant x$.

Denote by $\omega(n) = \sum_{p|n} 1$ the number of prime divisors of n.

We see that

$$\frac{n}{|R_n|} = \prod_{p|n} (2 + O(1/p))$$

and

$$rac{n}{|R_n|} o \infty$$
 if and only if $\omega(n) o \infty$.

Note that if n is taken from $[1,x]\in\mathbb{Z}$ uniformly at random, then

$$\mathbb{E}\omega(n) = \log\log x + O(1)$$

and

$$\operatorname{Var} \omega(n) \leq \log \log x + O(1).$$

Then by Chebyshev's inequality we obtain a theorem of Hardy and Ramanujan: if $f(x) \to \infty$ as $x \to \infty$, then

$$\omega(n) = \log \log x + O(f(x)\sqrt{\log \log x})$$

for all but o(x) numbers $n \leqslant x$.

Let R_p be the set of quadratic residues modulo a prime p. A special case of result of M.Z.Garaev, S.V.Konyagin and Yu.V.Malykhin is the following.

Theorem (G.-K.-M., 2012). Let M=p be a prime. Then

$$S(R_p) = s(|R_p|)(1 + o(1)), \quad p \to \infty$$

So we can say that the set of quadratic residues behaves like a random set (of the same size) with respect to the stochasticity parameter.

We turn to this problem an arbitrary modulo ${\cal M}$

Let R_p be the set of quadratic residues modulo a prime p. A special case of result of M.Z.Garaev, S.V.Konyagin and Yu.V.Malykhin is the following.

Theorem (G.-K.-M., 2012). Let M=p be a prime. Then

$$S(R_p) = s(|R_p|)(1 + o(1)), \quad p \to \infty.$$

So we can say that the set of quadratic residues behaves like a random set (of the same size) with respect to the stochasticity parameter.

We turn to this problem an arbitrary modulo ${\cal M}$

Let R_p be the set of quadratic residues modulo a prime p. A special case of result of M.Z.Garaev, S.V.Konyagin and Yu.V.Malykhin is the following.

Theorem (G.-K.-M., 2012). Let M=p be a prime. Then

$$S(R_p) = s(|R_p|)(1 + o(1)), \quad p \to \infty.$$

So we can say that the set of quadratic residues behaves like a random set (of the same size) with respect to the stochasticity parameter.

We turn to this problem an arbitrary modulo ${\cal M}$

Let R_p be the set of quadratic residues modulo a prime p. A special case of result of M.Z.Garaev, S.V.Konyagin and Yu.V.Malykhin is the following.

Theorem (G.-K.-M., 2012). Let M=p be a prime. Then

$$S(R_p) = s(|R_p|)(1 + o(1)), \quad p \to \infty.$$

So we can say that the set of quadratic residues behaves like a random set (of the same size) with respect to the stochasticity parameter.

We turn to this problem an arbitrary modulo M.

The limit distribution of spaces between quadratic residues

Let $R_M=\{0=r_1< r_2<...< r_{|R_M|}\}$ be the set of quadratic residues modulo M. As earlier, set $r_{|R_M|+1}:=r_1+M=M$.

Take an index j randomly and uniformly in $1,...,|R_M|$. On average we of course have

$$\mathbb{E}(r_{j+1} - r_j) = \frac{M}{|R_M|}$$

In 1999/2000 P.Kurlberg and Z.Rudnick found the limit distribution of spaces between quadratic residues.

Proposition 2. We have

$$\mathbb{P}\left(r_{j+1} - r_j > u \frac{M}{|R_M|}\right) = e^{-u}(1 + o(1)), \qquad \omega(M) \to \infty$$

uniformly in the range $0 \leqslant u \leqslant u_0$ for any fixed u_0 .

The limit distribution of spaces between quadratic residues

Let $R_M=\{0=r_1< r_2<\ldots< r_{|R_M|}\}$ be the set of quadratic residues modulo M. As earlier, set $r_{|R_M|+1}:=r_1+M=M$.

Take an index j randomly and uniformly in $1,...,|R_M|$. On average we of course have

$$\mathbb{E}(r_{j+1} - r_j) = \frac{M}{|R_M|}.$$

In 1999/2000 P.Kurlberg and Z.Rudnick found the limit distribution of spaces between quadratic residues.

Proposition 2. We have

$$\mathbb{P}\left(r_{j+1} - r_j > u \frac{M}{|R_M|}\right) = e^{-u}(1 + o(1)), \qquad \omega(M) \to \infty$$

uniformly in the range $0 \le u \le u_0$ for any fixed u_0 .

The limit distribution of spaces between quadratic residues

Let $R_M=\{0=r_1< r_2<\ldots< r_{|R_M|}\}$ be the set of quadratic residues modulo M. As earlier, set $r_{|R_M|+1}:=r_1+M=M.$

Take an index j randomly and uniformly in $1,...,|R_M|$. On average we of course have

$$\mathbb{E}(r_{j+1} - r_j) = \frac{M}{|R_M|}.$$

In 1999/2000 P.Kurlberg and Z.Rudnick found the limit distribution of spaces between quadratic residues.

Proposition 2. We have

$$\mathbb{P}\left(r_{j+1} - r_j > u \frac{M}{|R_M|}\right) = e^{-u}(1 + o(1)), \qquad \omega(M) \to \infty.$$

uniformly in the range $0 \le u \le u_0$ for any fixed u_0 .



Now let $\omega(M) \to \infty$. The result of P.Kurlberg and Z.Rudnick supports the conjecture that

$$S(R_M) = \sum_{i=1}^{|R_M|} (r_{i+1} - r_i)^2 = \frac{M^2}{|R_M|} \mathbb{E}\left(\frac{r_{i+1} - r_i}{M/|R_M|}\right)^2 \sim \frac{M^2}{|R_M|} \int\limits_0^\infty x^2 e^{-x} dx = \frac{2M^2}{|R_M|}$$

(however, we need good upper bounds for the contribution of large gaps betweer residues).

Also, if $\omega(M) \to \infty$, then $|R_M| \to \infty$ and $M/|R_M| \to \infty$, and hence, as we mentioned before,

$$s(|R_M|) = M \frac{2M - |R_M| + 1}{|R_M| + 1} \sim \frac{2M^2}{|R_M|}.$$

Recall Garaev, Konyagin, Malykhin proved $S(R_p)\sim s(|R_p|)=p\frac{2p-(p+1)/2+1}{(p+1)/2}\sim 3p$ (not $\frac{2p^2}{(p+1)/2)}\sim 4p$!)

Now let $\omega(M) \to \infty$. The result of P.Kurlberg and Z.Rudnick supports the conjecture that

$$S(R_M) = \sum_{i=1}^{|R_M|} (r_{i+1} - r_i)^2 = \frac{M^2}{|R_M|} \mathbb{E}\left(\frac{r_{i+1} - r_i}{M/|R_M|}\right)^2 \sim \frac{M^2}{|R_M|} \int\limits_0^\infty x^2 e^{-x} dx = \frac{2M^2}{|R_M|} \frac{1}{|R_M|} \frac{1}{|R_M|}$$

(however, we need good upper bounds for the contribution of large gaps betweer residues).

Also, if $\omega(M) \to \infty$, then $|R_M| \to \infty$ and $M/|R_M| \to \infty$, and hence, as we mentioned before,

$$s(|R_M|) = M \frac{2M - |R_M| + 1}{|R_M| + 1} \sim \frac{2M^2}{|R_M|}$$

Recall Garaev, Konyagin, Malykhin proved $S(R_p)\sim s(|R_p|)=p\frac{2p-(p+1)/2+1}{(p+1)/2}\sim 3p$ (not $\frac{2p^2}{(p+1)/2)}\sim 4p$!)

Now let $\omega(M) \to \infty$. The result of P.Kurlberg and Z.Rudnick supports the conjecture that

$$S(R_M) = \sum_{i=1}^{|R_M|} (r_{i+1} - r_i)^2 = \frac{M^2}{|R_M|} \mathbb{E} \left(\frac{r_{i+1} - r_i}{M/|R_M|} \right)^2 \sim \frac{M^2}{|R_M|} \int\limits_0^\infty x^2 e^{-x} dx = \frac{2M^2}{|R_M|}$$

(however, we need good upper bounds for the contribution of large gaps between residues).

Also, if $\omega(M) o\infty$, then $|R_M| o\infty$ and $M/|R_M| o\infty$, and hence, as we mentioned before,

$$s(|R_M|) = M \frac{2M - |R_M| + 1}{|R_M| + 1} \sim \frac{2M^2}{|R_M|}$$

Recall Garaev, Konyagin, Malykhin proved $S(R_p)\sim s(|R_p|)=p\frac{2p-(p+1)/2+1}{(p+1)/2}\sim 3p$ (not $\frac{2p^2}{(p+1)/2)}\sim 4p$!)

Now let $\omega(M) \to \infty$. The result of P.Kurlberg and Z.Rudnick supports the conjecture that

$$S(R_M) = \sum_{i=1}^{|R_M|} (r_{i+1} - r_i)^2 = \frac{M^2}{|R_M|} \mathbb{E} \left(\frac{r_{i+1} - r_i}{M/|R_M|} \right)^2 \sim \frac{M^2}{|R_M|} \int\limits_0^\infty x^2 e^{-x} dx = \frac{2M^2}{|R_M|}$$

(however, we need good upper bounds for the contribution of large gaps between residues).

Also, if $\omega(M)\to\infty$, then $|R_M|\to\infty$ and $M/|R_M|\to\infty$, and hence, as we mentioned before,

$$s(|R_M|) = M \frac{2M - |R_M| + 1}{|R_M| + 1} \sim \frac{2M^2}{|R_M|}.$$

Recall Garaev, Konyagin, Malykhin proved $S(R_p)\sim s(|R_p|)=p\frac{2p-(p+1)/2+1}{(p+1)/2}\sim 3p$ (not $\frac{2p^2}{(p+1)/2)}\sim 4p$!)

Now let $\omega(M) \to \infty$. The result of P.Kurlberg and Z.Rudnick supports the conjecture that

$$S(R_M) = \sum_{i=1}^{|R_M|} (r_{i+1} - r_i)^2 = \frac{M^2}{|R_M|} \mathbb{E} \left(\frac{r_{i+1} - r_i}{M/|R_M|} \right)^2 \sim \frac{M^2}{|R_M|} \int\limits_0^\infty x^2 e^{-x} dx = \frac{2M^2}{|R_M|}$$

(however, we need good upper bounds for the contribution of large gaps between residues).

Also, if $\omega(M)\to\infty$, then $|R_M|\to\infty$ and $M/|R_M|\to\infty$, and hence, as we mentioned before,

$$s(|R_M|) = M \frac{2M - |R_M| + 1}{|R_M| + 1} \sim \frac{2M^2}{|R_M|}.$$

Recall Garaev, Konyagin, Malykhin proved $S(R_p)\sim s(|R_p|)=p\frac{2p-(p+1)/2+1}{(p+1)/2}\sim 3p$ (not $\frac{2p^2}{(p+1)/2)}\sim 4p$!)

Now let $\omega(M) \to \infty$. The result of P.Kurlberg and Z.Rudnick supports the conjecture that

$$S(R_M) = \sum_{i=1}^{|R_M|} (r_{i+1} - r_i)^2 = \frac{M^2}{|R_M|} \mathbb{E} \left(\frac{r_{i+1} - r_i}{M/|R_M|} \right)^2 \sim \frac{M^2}{|R_M|} \int\limits_0^\infty x^2 e^{-x} dx = \frac{2M^2}{|R_M|}$$

(however, we need good upper bounds for the contribution of large gaps between residues).

Also, if $\omega(M)\to\infty$, then $|R_M|\to\infty$ and $M/|R_M|\to\infty$, and hence, as we mentioned before,

$$s(|R_M|) = M \frac{2M - |R_M| + 1}{|R_M| + 1} \sim \frac{2M^2}{|R_M|}.$$

Recall Garaev, Konyagin, Malykhin proved $S(R_p)\sim s(|R_p|)=p\frac{2p-(p+1)/2+1}{(p+1)/2}\sim 3p$ (not $\frac{2p^2}{(p+1)/2)}\sim 4p$!)

The first idea is to ask whether we have $S(R_M) \sim s(|R_M|)$ as $M \to \infty$.

It turns out to be false

Theorem 1. There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

On the other hand, for these modulus M Proposition 1 gives us

$$s(|R_M|) = \left(\frac{4A^2}{|R_A|} - A\right)p + O_A(1).$$

The first idea is to ask whether we have $S(R_M) \sim s(|R_M|)$ as $M \to \infty$. It turns out to be false.

Theorem 1. There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

On the other hand, for these modulus M Proposition 1 gives us

$$s(|R_M|) = \left(\frac{4A^2}{|R_A|} - A\right)p + O_A(1).$$

The first idea is to ask whether we have $S(R_M) \sim s(|R_M|)$ as $M \to \infty$. It turns out to be false.

Theorem 1. There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

On the other hand, for these modulus M Proposition 1 gives us

$$s(|R_M|) = \left(\frac{4A^2}{|R_A|} - A\right)p + O_A(1).$$

The first idea is to ask whether we have $S(R_M) \sim s(|R_M|)$ as $M \to \infty$. It turns out to be false.

Theorem 1. There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

On the other hand, for these modulus M Proposition 1 gives us

$$s(|R_M|) = \left(\frac{4A^2}{|R_A|} - A\right)p + O_A(1).$$

The first idea is to ask whether we have $S(R_M) \sim s(|R_M|)$ as $M \to \infty$. It turns out to be false.

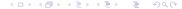
Theorem 1. There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

On the other hand, for these modulus M Proposition 1 gives us

$$s(|R_M|) = \left(\frac{4A^2}{|R_A|} - A\right)p + O_A(1).$$



Corollary. We have

$$\varliminf_{M \to \infty} \frac{S(R_M)}{s(|R_M|)} < 1 < \varlimsup_{M \to \infty} \frac{S(R_M)}{s(|R_M|)}$$

and the conjecture does not hold in general.

Since
$$S(R_M)\geqslant rac{M^2}{|R_M|}$$
 and $s(|R_M|)=Mrac{2M-|R_M|+1}{|R_M|+1}\leqslant rac{2M^2}{|R_M|}$, we have $S(R_M)$

$$\lim_{M \to \infty} \frac{s(R_M)}{s(|R_M|)} \geqslant 0.5$$

But is it true that

$$\overline{\lim}_{M \to \infty} \frac{S(R_M)}{s(|R_M|)} < \infty ?$$

We do not know, but

$$S(R_M) \ll M2^{\omega(M)} \log M \prod_{p|M} \left(1 + \frac{1}{\sqrt{p}}\right) \left(1 - \frac{1}{p}\right).$$

Corollary. We have

$$\varliminf_{M \to \infty} \frac{S(R_M)}{s(|R_M|)} < 1 < \varlimsup_{M \to \infty} \frac{S(R_M)}{s(|R_M|)}$$

and the conjecture does not hold in general.

Since
$$S(R_M)\geqslant \frac{M^2}{|R_M|}$$
 and $s(|R_M|)=M\frac{2M-|R_M|+1}{|R_M|+1}\leqslant \frac{2M^2}{|R_M|}$, we have
$$\lim_{M\to\infty}\frac{S(R_M)}{s(|R_M|)}\geqslant 0.5\,.$$

But is it true that

$$\overline{\lim}_{M \to \infty} \frac{S(R_M)}{s(|R_M|)} < \infty ?$$

We do not know, but

$$S(R_M) \ll M2^{\omega(M)} \log M \prod_{p|M} \left(1 + \frac{1}{\sqrt{p}}\right) \left(1 - \frac{1}{p}\right).$$

Corollary. We have

$$\varliminf_{M \to \infty} \frac{S(R_M)}{s(|R_M|)} < 1 < \varlimsup_{M \to \infty} \frac{S(R_M)}{s(|R_M|)}$$

and the conjecture does not hold in general.

Since
$$S(R_M)\geqslant \frac{M^2}{|R_M|}$$
 and $s(|R_M|)=M\frac{2M-|R_M|+1}{|R_M|+1}\leqslant \frac{2M^2}{|R_M|}$, we have
$$\lim_{M\to\infty}\frac{S(R_M)}{s(|R_M|)}\geqslant 0.5\,.$$

But is it true that

$$\overline{\lim}_{M \to \infty} \frac{S(R_M)}{s(|R_M|)} < \infty ?$$

We do not know, but

$$S(R_M) \ll M2^{\omega(M)} \log M \prod_{p|M} \left(1 + \frac{1}{\sqrt{p}}\right) \left(1 - \frac{1}{p}\right).$$

Corollary. We have

$$\varliminf_{M \to \infty} \frac{S(R_M)}{s(|R_M|)} < 1 < \varlimsup_{M \to \infty} \frac{S(R_M)}{s(|R_M|)}$$

and the conjecture does not hold in general.

Since
$$S(R_M)\geqslant \frac{M^2}{|R_M|}$$
 and $s(|R_M|)=M\frac{2M-|R_M|+1}{|R_M|+1}\leqslant \frac{2M^2}{|R_M|}$, we have
$$\lim_{M\to\infty}\frac{S(R_M)}{s(|R_M|)}\geqslant 0.5\,.$$

But is it true that

$$\overline{\lim}_{M \to \infty} \frac{S(R_M)}{s(|R_M|)} < \infty ?$$

We do not know, but

$$S(R_M) \ll M 2^{\omega(M)} \log M \prod_{p|M} \left(1 + \frac{1}{\sqrt{p}}\right) \left(1 - \frac{1}{p}\right).$$

Corollary. We have

$$\varliminf_{M \to \infty} \frac{S(R_M)}{s(|R_M|)} < 1 < \varlimsup_{M \to \infty} \frac{S(R_M)}{s(|R_M|)}$$

and the conjecture does not hold in general.

Since
$$S(R_M)\geqslant \frac{M^2}{|R_M|}$$
 and $s(|R_M|)=M\frac{2M-|R_M|+1}{|R_M|+1}\leqslant \frac{2M^2}{|R_M|}$, we have
$$\lim_{M\to\infty}\frac{S(R_M)}{s(|R_M|)}\geqslant 0.5\,.$$

But is it true that

$$\overline{\lim}_{M \to \infty} \frac{S(R_M)}{s(|R_M|)} < \infty ?$$

We do not know, but

$$S(R_M) \ll M 2^{\omega(M)} \log M \prod_{p|M} \left(1 + \frac{1}{\sqrt{p}}\right) \left(1 - \frac{1}{p}\right).$$

$$f_1(y) = 1 + y$$

$$f_3(y) = \frac{5y^2 + 8y + 5}{1 + y}$$

$$f_4(y) = \frac{10y^2 + 12y + 10}{1 + y}$$

$$f_5(y) = \frac{11y^3 + 14y^2 + 14y + 11}{1 + y + y^2}$$

$$f_7(y) = \frac{15y^4 + 24y^3 + 20y^2 + 24y + 15}{1 + y + y^2 + y^3}$$

$$f_8(y) = \frac{26y^3 + 38y^2 + 38y + 26}{1 + y + y^2}$$

$$f_1(y) = 1 + y$$

$$f_3(y) = \frac{5y^2 + 8y + 5}{1 + y}$$

$$f_4(y) = \frac{10y^2 + 12y + 10}{1 + y}$$

$$f_5(y) = \frac{11y^3 + 14y^2 + 14y + 11}{1 + y + y^2}$$

$$f_7(y) = \frac{15y^4 + 24y^3 + 20y^2 + 24y + 15}{1 + y + y^2 + y^3}$$

$$f_8(y) = \frac{26y^3 + 38y^2 + 38y + 26}{1 + y + y^2}$$

$$f_1(y) = 1 + y$$

$$f_3(y) = \frac{5y^2 + 8y + 5}{1 + y}$$

$$f_4(y) = \frac{10y^2 + 12y + 10}{1 + y}$$

$$f_5(y) = \frac{11y^3 + 14y^2 + 14y + 11}{1 + y + y^2}$$

$$f_7(y) = \frac{15y^4 + 24y^3 + 20y^2 + 24y + 15}{1 + y + y^2 + y^3}$$

$$f_8(y) = \frac{26y^3 + 38y^2 + 38y + 26}{1 + y + y^2}$$

$$f_1(y) = 1 + y$$

$$f_3(y) = \frac{5y^2 + 8y + 5}{1 + y}$$

$$f_4(y) = \frac{10y^2 + 12y + 10}{1 + y}$$

$$f_5(y) = \frac{11y^3 + 14y^2 + 14y + 11}{1 + y + y^2}$$

$$f_7(y) = \frac{15y^4 + 24y^3 + 20y^2 + 24y + 15}{1 + y + y^2 + y^3}$$

$$f_8(y) = \frac{26y^3 + 38y^2 + 38y + 26}{1 + y + y^2}$$

$$f_1(y) = 1 + y$$

$$f_3(y) = \frac{5y^2 + 8y + 5}{1 + y}$$

$$f_4(y) = \frac{10y^2 + 12y + 10}{1 + y}$$

$$f_5(y) = \frac{11y^3 + 14y^2 + 14y + 11}{1 + y + y^2}$$

$$f_7(y) = \frac{15y^4 + 24y^3 + 20y^2 + 24y + 15}{1 + y + y^2 + y^3}$$

$$f_8(y) = \frac{26y^3 + 38y^2 + 38y + 26}{1 + y + y^2}$$

$$f_1(y) = 1 + y$$

$$f_3(y) = \frac{5y^2 + 8y + 5}{1 + y}$$

$$f_4(y) = \frac{10y^2 + 12y + 10}{1 + y}$$

$$f_5(y) = \frac{11y^3 + 14y^2 + 14y + 11}{1 + y + y^2}$$

$$f_7(y) = \frac{15y^4 + 24y^3 + 20y^2 + 24y + 15}{1 + y + y^2 + y^3}$$

$$f_8(y) = \frac{26y^3 + 38y^2 + 38y + 26}{1 + y + y^2}$$

Examples of f_A

$$f_{11}(y) = \frac{27y^6 + 38y^5 + 34y^4 + 44y^3 + 34y^2 + 38y + 27}{1 + y + y^2 + y^3 + y^4 + y^5}$$
$$f_{13}(y) = \frac{37y^7 + 38y^6 + 54y^5 + 40y^4 + 40y^3 + 54y^2 + 38y + 37}{1 + y + y^2 + y^3 + y^4 + y^5 + y^6}$$

The genuine definition of f_A

Let $\{s_1,...,s_{|R_A|}\}$ be consecutive distances between quadratic residues modulo A . In fact,

$$f_A(y) = \frac{F(y)}{Q(y)}$$

where $Q(y) = Q_A(y) = 1 + y + \ldots + y^{|R_A|-1}$ and

$$F(y) = F_A(y) = \sum_{k=0}^{|R_A|} \beta_k y^k$$

is the reciprocal polynomial with the coefficients $\beta_0 = \beta_{|R_A|} = \sum_i s_i^2 = S(R_A)$ and $\beta_k = 2\sum_{i=1}^{|R_A|} s_i s_{i+k}$ for $0 < k < |R_A|$ (we think of indices i as elements of $\mathbb{Z}_{|R_A|}$)

The genuine definition of f_A

Let $\{s_1,...,s_{|R_A|}\}$ be consecutive distances between quadratic residues modulo A. In fact,

$$f_A(y) = \frac{F(y)}{Q(y)}$$

where $Q(y) = Q_A(y) = 1 + y + \ldots + y^{|R_A|-1}$ and

$$F(y) = F_A(y) = \sum_{k=0}^{|R_A|} \beta_k y^k$$

is the reciprocal polynomial with the coefficients $\beta_0 = \beta_{|R_A|} = \sum_i s_i^2 = S(R_A)$ and $\beta_k = 2\sum_{i=1}^{|R_A|} s_i s_{i+k}$ for $0 < k < |R_A|$ (we think of indices i as elements of $\mathbb{Z}_{|R_A|}$).

Refined conjecture: believed for almost all moduli

So, a more accurate question is the following. Do we have

$$S(R_M) \sim s(|R_M|), \quad M \to \infty,$$

for almost M?

It was proved in an unpublished work of Konyagin.

Refined conjecture: believed for almost all moduli

So, a more accurate question is the following. Do we have

$$S(R_M) \sim s(|R_M|), \quad M \to \infty,$$

for almost M?

It was proved in an unpublished work of Konyagin.

$M = Ap_1 \dots p_t$

Let us turn to the second term in the asymptotics

Theorem 1 (once again). There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

Why only one large prime factor? Why only a fixed A?

Let c_0 and C_0 be positive absolute constants, c_0 is small, C_0 is large. Let Ω be the set of all positive integers M such that M=Am, where

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$;
- (ii) $m=p_1\dots p_t,\ t\geqslant 0.4\log\log M$ and $p_1< p_2<\dots < p_t$ are primes greater than $2^{C_0t},$

$M = A\overline{p_1 \dots p_t}$

Let us turn to the second term in the asymptotics.

Theorem 1 (once again). There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

Why only one large prime factor? Why only a fixed A?

Let c_0 and C_0 be positive absolute constants, c_0 is small, C_0 is large. Let Ω be the set of all positive integers M such that M=Am, where

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$:
- (ii) $m=p_1\dots p_t,\ t\geqslant 0.4\log\log M$ and $p_1< p_2<\dots < p_t$ are primes greater than 2^{C_0t} ,

Let us turn to the second term in the asymptotics.

Theorem 1 (once again). There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

Why only one large prime factor? Why only a fixed A?

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$
- (ii) $m=p_1\dots p_t,\ t\geqslant 0.4\log\log M$ and $p_1< p_2<\dots < p_t$ are primes greater than 2^{C_0t} ,

Let us turn to the second term in the asymptotics.

Theorem 1 (once again). There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

Why only one large prime factor? Why only a fixed A?

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$
- (ii) $m=p_1\dots p_t,\ t\geqslant 0.4\log\log M$ and $p_1< p_2<\dots < p_t$ are primes greater than $2^{C_0t},$

Let us turn to the second term in the asymptotics.

Theorem 1 (once again). There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

Why only one large prime factor? Why only a fixed A?

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$
- (ii) $m=p_1\dots p_t,\ t\geqslant 0.4\log\log M$ and $p_1< p_2<\dots < p_t$ are primes greater than 2^{C_0t} ,

Let us turn to the second term in the asymptotics.

Theorem 1 (once again). There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

Why only one large prime factor? Why only a fixed A?

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$
- (ii) $m=p_1\dots p_t,\ t\geqslant 0.4\log\log M$ and $p_1< p_2<\dots < p_t$ are primes greater than 2^{C_0t} .

Let us turn to the second term in the asymptotics.

Theorem 1 (once again). There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

Why only one large prime factor? Why only a fixed A?

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$;
- (ii) $m=p_1\dots p_t,\ t\geqslant 0.4\log\log M$ and $p_1< p_2<\dots< p_t$ are primes greater than 2^{C_0t} ,

Let us turn to the second term in the asymptotics.

Theorem 1 (once again). There exists absolute constant c>0 such that for any fixed A and M=Ap we have

$$S(R_M) = 2f_A(0.5)p + O(A^4p^{1-c})$$

where f_A is a function determined by the number A.

Why only one large prime factor? Why only a fixed A?

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$;
- (ii) $m=p_1\dots p_t, \ t\geqslant 0.4\log\log M$ and $p_1< p_2<\dots < p_t$ are primes greater than 2^{C_0t} ,

Our main result is the following.

Theorem 2. There exists absolute constant c>0 such that for $M\in\Omega$ we have

$$S(R_M) = m2^{t+1}A^2|R_A|^{-1} - A^2|R_A|^{-1}m + E,$$

where

$$E \ll m2^{3t}A^4p_1^{-c} + mA^2|R_A|2^{-t} = o(m), \quad M \to \infty, M \in \Omega.$$

Moreover, the set Ω has positive lower density.

(Let us note that
$$m2^{t+1}A^2|R_A|^{-1}=2M\cdot\frac{A}{|R_A|}2^t\sim\frac{2M^2}{|R_M|}).$$

$$s(|R_M|) = m2^{t+1}A^2|R_A|^{-1} - Am + O(A^2|R_A|^{-1}m2^{2t}p_1^{-1}).$$

Our main result is the following.

Theorem 2. There exists absolute constant c>0 such that for $M\in\Omega$ we have

$$S(R_M) = m2^{t+1}A^2|R_A|^{-1} - A^2|R_A|^{-1}m + E,$$

where

$$E \ll m2^{3t}A^4p_1^{-c} + mA^2|R_A|2^{-t} = o(m), \quad M \to \infty, M \in \Omega.$$

Moreover, the set Ω has positive lower density.

(Let us note that
$$m2^{t+1}A^2|R_A|^{-1}=2M\cdot \frac{A}{|R_A|}2^t\sim \frac{2M^2}{|R_M|}$$
).

$$s(|R_M|) = m2^{t+1}A^2|R_A|^{-1} - Am + O(A^2|R_A|^{-1}m2^{2t}p_1^{-1}).$$

Our main result is the following.

Theorem 2. There exists absolute constant c>0 such that for $M\in\Omega$ we have

$$S(R_M) = m2^{t+1}A^2|R_A|^{-1} - A^2|R_A|^{-1}m + E,$$

where

$$E \ll m2^{3t}A^4p_1^{-c} + mA^2|R_A|2^{-t} = o(m), \quad M \to \infty, M \in \Omega.$$

Moreover, the set Ω has positive lower density.

(Let us note that
$$m2^{t+1}A^2|R_A|^{-1}=2M\cdot \frac{A}{|R_A|}2^t\sim \frac{2M^2}{|R_M|}$$
).

$$s(|R_M|) = m2^{t+1}A^2|R_A|^{-1} - Am + O(A^2|R_A|^{-1}m2^{2t}p_1^{-1}).$$

Our main result is the following.

Theorem 2. There exists absolute constant c>0 such that for $M\in\Omega$ we have

$$S(R_M) = m2^{t+1}A^2|R_A|^{-1} - A^2|R_A|^{-1}m + E,$$

where

$$E \ll m2^{3t}A^4p_1^{-c} + mA^2|R_A|2^{-t} = o(m), \quad M \to \infty, M \in \Omega.$$

Moreover, the set Ω has positive lower density.

(Let us note that
$$m2^{t+1}A^2|R_A|^{-1}=2M\cdot\frac{A}{|R_A|}2^t\sim\frac{2M^2}{|R_M|}).$$

$$s(|R_M|) = m2^{t+1}A^2|R_A|^{-1} - Am + O(A^2|R_A|^{-1}m2^{2t}p_1^{-1}).$$

Our main result is the following.

Theorem 2. There exists absolute constant c>0 such that for $M\in\Omega$ we have

$$S(R_M) = m2^{t+1}A^2|R_A|^{-1} - A^2|R_A|^{-1}m + E,$$

where

$$E \ll m 2^{3t} A^4 p_1^{-c} + m A^2 |R_A| 2^{-t} = o(m), \quad M \to \infty, \, M \in \Omega.$$

Moreover, the set Ω has positive lower density.

(Let us note that
$$m2^{t+1}A^2|R_A|^{-1}=2M\cdot\frac{A}{|R_A|}2^t\sim\frac{2M^2}{|R_M|}).$$

$$s(|R_M|) = m2^{t+1}A^2|R_A|^{-1} - Am + O(A^2|R_A|^{-1}m2^{2t}p_1^{-1}).$$

Corollaries

Corollary. We have

$$S(R_M) = s(|R_M|)(1 + o(1)), \quad M \to \infty, M \in \Omega.$$

It is a generalization of the mentioned result of Garaev, Konyagin, Malykhin

Corollary (weak repulsion) For all sufficiently large $M\in\Omega$ with $A\geqslant 3$ we have

$$S(R_M) < s(|R_M|).$$

Corollaries

Corollary. We have

$$S(R_M) = s(|R_M|)(1 + o(1)), \quad M \to \infty, M \in \Omega.$$

It is a generalization of the mentioned result of Garaev, Konyagin, Malykhin.

Corollary (weak repulsion) For all sufficiently large $M \in \Omega$ with $A \geqslant 3$ we have

$$S(R_M) < s(|R_M|).$$

Corollaries

Corollary. We have

$$S(R_M) = s(|R_M|)(1 + o(1)), \quad M \to \infty, M \in \Omega.$$

It is a generalization of the mentioned result of Garaev, Konyagin, Malykhin.

Corollary (weak repulsion) For all sufficiently large $M \in \Omega$ with $A \geqslant 3$ we have

$$S(R_M) < s(|R_M|).$$

Another conjecture

Gravitation Conjecture. The set

$$\{M \in \mathbb{N} : S(R_M) > s(|R_M|)\}$$

also has positive lower density.

It seems that we are unable to prove this using our method.

Another conjecture

Gravitation Conjecture. The set

$$\{M \in \mathbb{N} : S(R_M) > s(|R_M|)\}$$

also has positive lower density.

It seems that we are unable to prove this using our method.

We can write

$$S(R_M) = \sum_{l \geqslant 1} N_l l^2,$$

where

$$N_l = \#\{x \in \mathbb{Z}_M : x, x + l \in R_M, x + 1, \dots, x + l - 1 \notin R_M\}.$$

Let M=p be a prime for simplicity. Consider the Legendre symbol $\left(rac{\cdot}{p}
ight):\mathbb{Z}_p o\mathbb{C},$ defined by

$$\left(rac{n}{p}
ight) = egin{cases} 0, & n=0; \ 1, & n ext{ is a quadratic residue;} \ -1, & n ext{ is a quadratic nonresidue} \end{cases}$$

It is a character $\operatorname{mod} p$, that is, a homomorphism between \mathbb{Z}_p^* and \mathbb{C}^*

Denote the Legendre symbol $\operatorname{mod} p$ by χ_p for the brevity. Our benefit is that

$$R_p(x) = \frac{1}{2}(1 + \chi_p(x) + 1(x = 0))$$

$$1 - R_p(x) = \frac{1}{2}(1 - \chi_p(x) - 1(x = 0))$$

We can write

$$S(R_M) = \sum_{l \geqslant 1} N_l l^2,$$

where

$$N_l = \#\{x \in \mathbb{Z}_M : x, x + l \in R_M, x + 1, \dots, x + l - 1 \notin R_M\}.$$

Let M=p be a prime for simplicity. Consider the Legendre symbol $\left(\frac{\cdot}{p}\right):\mathbb{Z}_p\to\mathbb{C}$, defined by

$$\left(rac{n}{p}
ight) = egin{cases} 0, & n=0; \ 1, & n ext{ is a quadratic residue;} \ -1, & n ext{ is a quadratic nonresidue} \end{cases}$$

It is a character $\operatorname{mod} p$, that is, a homomorphism between \mathbb{Z}_p^* and \mathbb{C}^*

Denote the Legendre symbol $\operatorname{mod} p$ by χ_p for the brevity. Our benefit is that

$$R_p(x) = \frac{1}{2}(1 + \chi_p(x) + 1(x = 0))$$

$$1 - R_p(x) = \frac{1}{2}(1 - \chi_p(x) - 1(x = 0))$$

We can write

$$S(R_M) = \sum_{l \geqslant 1} N_l l^2,$$

where

$$N_l = \#\{x \in \mathbb{Z}_M : x, x + l \in R_M, x + 1, \dots, x + l - 1 \notin R_M\}.$$

Let M=p be a prime for simplicity. Consider the Legendre symbol $\left(\frac{\cdot}{p}\right):\mathbb{Z}_p\to\mathbb{C}$, defined by

$$\left(\frac{n}{p}\right) = \begin{cases} 0, & n = 0; \\ 1, & n \text{ is a quadratic residue;} \\ -1, & n \text{ is a quadratic nonresidue.} \end{cases}$$

It is a character $\operatorname{mod} p$, that is, a homomorphism between \mathbb{Z}_p^* and \mathbb{C}^*

Denote the Legendre symbol $\operatorname{mod} p$ by χ_p for the brevity. Our benefit is that

$$R_p(x) = \frac{1}{2}(1 + \chi_p(x) + 1(x = 0))$$

$$1 - R_p(x) = \frac{1}{2}(1 - \chi_p(x) - 1(x = 0))$$

We can write

$$S(R_M) = \sum_{l \geqslant 1} N_l l^2,$$

where

$$N_l = \#\{x \in \mathbb{Z}_M : x, x + l \in R_M, x + 1, \dots, x + l - 1 \notin R_M\}.$$

Let M=p be a prime for simplicity. Consider the Legendre symbol $\left(\frac{\cdot}{p}\right):\mathbb{Z}_p\to\mathbb{C}$, defined by

$$\left(\frac{n}{p}\right) = \begin{cases} 0, & n = 0; \\ 1, & n \text{ is a quadratic residue;} \\ -1, & n \text{ is a quadratic nonresidue.} \end{cases}$$

It is a character $\operatorname{mod} p$, that is, a homomorphism between \mathbb{Z}_p^* and \mathbb{C}^* .

Denote the Legendre symbol $\operatorname{mod} p$ by χ_p for the brevity. Our benefit is that

$$R_p(x) = \frac{1}{2}(1 + \chi_p(x) + 1(x = 0))$$

$$1 - R_p(x) = \frac{1}{2}(1 - \chi_p(x) - 1(x = 0))$$

We can write

$$S(R_M) = \sum_{l \geqslant 1} N_l l^2,$$

where

$$N_l = \#\{x \in \mathbb{Z}_M : x, x + l \in R_M, x + 1, \dots, x + l - 1 \notin R_M\}.$$

Let M=p be a prime for simplicity. Consider the Legendre symbol $\left(\frac{\cdot}{p}\right):\mathbb{Z}_p\to\mathbb{C}$, defined by

$$\left(\frac{n}{p}\right) = \begin{cases} 0, & n = 0; \\ 1, & n \text{ is a quadratic residue;} \\ -1, & n \text{ is a quadratic nonresidue.} \end{cases}$$

It is a character $\operatorname{mod} p$, that is, a homomorphism between \mathbb{Z}_p^* and \mathbb{C}^* .

Denote the Legendre symbol $\operatorname{mod} p$ by χ_p for the brevity. Our benefit is that

$$R_p(x) = \frac{1}{2}(1 + \chi_p(x) + 1(x = 0))$$

$$1 - R_p(x) = \frac{1}{2}(1 - \chi_p(x) - 1(x = 0))$$

We can write

$$S(R_M) = \sum_{l \geqslant 1} N_l l^2,$$

where

$$N_l = \#\{x \in \mathbb{Z}_M : x, x + l \in R_M, x + 1, \dots, x + l - 1 \notin R_M\}.$$

Let M=p be a prime for simplicity. Consider the Legendre symbol $\left(\frac{\cdot}{p}\right):\mathbb{Z}_p\to\mathbb{C}$, defined by

$$\left(\frac{n}{p}\right) = \begin{cases} 0, & n = 0; \\ 1, & n \text{ is a quadratic residue;} \\ -1, & n \text{ is a quadratic nonresidue.} \end{cases}$$

It is a character $\operatorname{mod} p$, that is, a homomorphism between \mathbb{Z}_p^* and \mathbb{C}^* .

Denote the Legendre symbol $\operatorname{mod} p$ by χ_p for the brevity. Our benefit is that

$$R_p(x) = \frac{1}{2}(1 + \chi_p(x) + 1(x = 0))$$

$$1 - R_p(x) = \frac{1}{2}(1 - \chi_p(x) - 1(x = 0)).$$

$$N_{l} = \sum_{x \in \mathbb{Z}_{p}} R_{p}(x) R_{p}(x+l) \prod_{i=1}^{l-1} (1 - R_{p}(x+i)) =$$

$$\sum_{x \in \mathbb{Z}_{p}} \frac{1 + \chi_{p}(x) + 1(x=0)}{2} R_{p}(x+l) \prod_{i=1}^{l-1} (1 - R_{p}(x+i)) =$$

$$\sum_{x \in \mathbb{Z}_{p}} \frac{1 + \chi_{p}(x)}{2} R_{p}(x+l) \prod_{i=1}^{l-1} (1 - R_{p}(x+i)) + O(1) =$$

$$2^{-l} \sum_{x \in \mathbb{Z}_{p}} (1 + \chi_{p}(x)) (1 + \chi_{p}(x+l)) \prod_{i=1}^{l-1} (1 - \chi_{p}(x+i)) + O(l).$$

Here we have the main term $p2^{-l}$, the error term O(l) and 2^l-1 character sums of the type $\sum_{x\in\mathbb{Z}_p}\chi_p(x+a_1)...\chi_p(x+a_r)$ with distinct $a_1,...,a_r$. Such a sum is estimated by $rp^{1/2}$ in magnitude (famous Weil's theorem).

Hence

$$N_l = p2^{-l} + O(l2^l p^{1/2})$$

$$\begin{split} N_l &= \sum_{x \in \mathbb{Z}_p} R_p(x) R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x) + 1(x=0)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) + O(1) = \\ &2^{-l} \sum_{x \in \mathbb{Z}_p} (1 + \chi_p(x)) (1 + \chi_p(x+l)) \prod_{i=1}^{l-1} (1 - \chi_p(x+i)) + O(l). \end{split}$$

Here we have the main term $p2^{-l}$, the error term O(l) and 2^l-1 character sums of the type $\sum_{x\in\mathbb{Z}_p}\chi_p(x+a_1)...\chi_p(x+a_r)$ with distinct $a_1,...,a_r$. Such a sum is estimated by $rp^{1/2}$ in magnitude (famous Weil's theorem).

Hence

$$N_l = p2^{-l} + O(l2^l p^{1/2})$$

$$\begin{split} N_l &= \sum_{x \in \mathbb{Z}_p} R_p(x) R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x) + 1(x=0)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) + O(1) = \\ &2^{-l} \sum_{x \in \mathbb{Z}_p} (1 + \chi_p(x)) (1 + \chi_p(x+l)) \prod_{i=1}^{l-1} (1 - \chi_p(x+i)) + O(l). \end{split}$$

Here we have the main term $p2^{-l}$, the error term O(l) and 2^l-1 character sums of the type $\sum_{x\in\mathbb{Z}_p}\chi_p(x+a_1)...\chi_p(x+a_r)$ with distinct $a_1,...,a_r$. Such a sum is estimated by $rp^{1/2}$ in magnitude (famous Weil's theorem).

Hence

$$N_l = p2^{-l} + O(l2^l p^{1/2})$$

$$\begin{split} N_l &= \sum_{x \in \mathbb{Z}_p} R_p(x) R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x) + 1(x=0)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) + O(1) = \\ &2^{-l} \sum_{x \in \mathbb{Z}_p} (1 + \chi_p(x)) (1 + \chi_p(x+l)) \prod_{i=1}^{l-1} (1 - \chi_p(x+i)) + O(l). \end{split}$$

Here we have the main term $p2^{-l}$, the error term O(l) and 2^l-1 character sums of the type $\sum_{x\in\mathbb{Z}_p}\chi_p(x+a_1)...\chi_p(x+a_r)$ with distinct $a_1,...,a_r$. Such a sum is estimated by $rp^{1/2}$ in magnitude (famous Weil's theorem).

Hence

$$N_l = p2^{-l} + O(l2^l p^{1/2})$$

$$\begin{split} N_l &= \sum_{x \in \mathbb{Z}_p} R_p(x) R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x) + 1(x=0)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) + O(1) = \\ &2^{-l} \sum_{x \in \mathbb{Z}_p} (1 + \chi_p(x)) (1 + \chi_p(x+l)) \prod_{i=1}^{l-1} (1 - \chi_p(x+i)) + O(l). \end{split}$$

Here we have the main term $p2^{-l}$, the error term O(l) and 2^l-1 character sums of the type $\sum_{x\in\mathbb{Z}_p}\chi_p(x+a_1)...\chi_p(x+a_r)$ with distinct $a_1,...,a_r$. Such a sum is estimated by $rp^{1/2}$ in magnitude (famous Weil's theorem).

Hence

$$N_l = p2^{-l} + O(l2^l p^{1/2})$$

$$\begin{split} N_l &= \sum_{x \in \mathbb{Z}_p} R_p(x) R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x) + 1(x=0)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) + O(1) = \\ &2^{-l} \sum_{x \in \mathbb{Z}_p} (1 + \chi_p(x)) (1 + \chi_p(x+l)) \prod_{i=1}^{l-1} (1 - \chi_p(x+i)) + O(l). \end{split}$$

Here we have the main term $p2^{-l}$, the error term O(l) and 2^l-1 character sums of the type $\sum_{x\in\mathbb{Z}_p}\chi_p(x+a_1)...\chi_p(x+a_r)$ with distinct $a_1,...,a_r$. Such a sum is estimated by $rp^{1/2}$ in magnitude (famous Weil's theorem).

Hence

$$N_l = p2^{-l} + O(l2^l p^{1/2})$$

$$\begin{split} N_l &= \sum_{x \in \mathbb{Z}_p} R_p(x) R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x) + 1(x=0)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) = \\ &\sum_{x \in \mathbb{Z}_p} \frac{1 + \chi_p(x)}{2} R_p(x+l) \prod_{i=1}^{l-1} (1 - R_p(x+i)) + O(1) = \\ &2^{-l} \sum_{x \in \mathbb{Z}_p} (1 + \chi_p(x)) (1 + \chi_p(x+l)) \prod_{i=1}^{l-1} (1 - \chi_p(x+i)) + O(l). \end{split}$$

Here we have the main term $p2^{-l}$, the error term O(l) and 2^l-1 character sums of the type $\sum_{x\in\mathbb{Z}_p}\chi_p(x+a_1)...\chi_p(x+a_r)$ with distinct $a_1,...,a_r$. Such a sum is estimated by $rp^{1/2}$ in magnitude (famous Weil's theorem).

Hence,

$$N_l = p2^{-l} + O(l2^l p^{1/2})$$

For composite moduli of the type $p_1...p_t$ with distinct large p_j (larger than 2^t) and small l (roughly less than $M/|R_M| \sim 2^t$) we can find the asymptotics for N_l using a simple version of sieve method and estimates of character sums. Large values of l give negligible contribution to the sum $\sum_l N_l l^2$. Small arbitrary factor A gives additional technical difficulties.

In fact, we prove that

$$S(R_M) = m2^t f_A(y_t) + O(m2^{3t} A^4 p_1^{-c}),$$

where $y=1-2^{-t}$ and f_A is the function defined earlier

We see that to have a reasonable error term we should require $p_1^{-c}\gg A^4$

For composite moduli of the type $p_1...p_t$ with distinct large p_j (larger than 2^t) and small l (roughly less than $M/|R_M| \sim 2^t$) we can find the asymptotics for N_l using a simple version of sieve method and estimates of character sums. Large values of l give negligible contribution to the sum $\sum_l N_l l^2$. Small arbitrary factor A gives additional technical difficulties.

In fact, we prove that

$$S(R_M) = m2^t f_A(y_t) + O(m2^{3t} A^4 p_1^{-c}),$$

where $y = 1 - 2^{-t}$ and f_A is the function defined earlier.

We see that to have a reasonable error term we should require $p_1^{-c}\gg A^4$

For composite moduli of the type $p_1...p_t$ with distinct large p_j (larger than 2^t) and small l (roughly less than $M/|R_M| \sim 2^t$) we can find the asymptotics for N_l using a simple version of sieve method and estimates of character sums. Large values of l give negligible contribution to the sum $\sum_l N_l l^2$. Small arbitrary factor A gives additional technical difficulties.

In fact, we prove that

$$S(R_M) = m2^t f_A(y_t) + O(m2^{3t} A^4 p_1^{-c}),$$

where $y=1-2^{-t}$ and f_A is the function defined earlier.

We see that to have a reasonable error term we should require $p_1^{-c}\gg A^4$

What about f_A ?

We are able to prove that

$$f_A(1) = \frac{2A^2}{|R_A|} \text{ and } \quad f_A'(1) = \frac{A^2}{|R_A|}.$$

Hence by Taylor's expansion

$$m2^{t}f_{A}(y_{t}) = m2^{t+1}A^{2}|R_{A}|^{-1} - mA^{2}|R_{A}|^{-1} + \frac{1}{2}f_{A}''(\theta_{t})m2^{-t}.$$

Also we prove the bound $f_A^{\prime\prime}(y) \ll A^{O(1)}$ for $y \in (1/2,1]$.

Getting all of this together we get Theorem 2

What about f_A ?

We are able to prove that

$$f_A(1) = rac{2A^2}{|R_A|} \; {
m and} \; \; \; f_A'(1) = rac{A^2}{|R_A|}.$$

Hence by Taylor's expansion

$$m2^{t} f_{A}(y_{t}) = m2^{t+1} A^{2} |R_{A}|^{-1} - mA^{2} |R_{A}|^{-1} + \frac{1}{2} f_{A}''(\theta_{t}) m2^{-t}.$$

Also we prove the bound $f_A^{\prime\prime}(y) \ll A^{O(1)}$ for $y \in (1/2,1]$

Getting all of this together we get Theorem 2

What about f_A ?

We are able to prove that

$$f_A(1) = \frac{2A^2}{|R_A|} \text{ and } \quad f_A'(1) = \frac{A^2}{|R_A|}.$$

Hence by Taylor's expansion

$$m2^{t} f_{A}(y_{t}) = m2^{t+1} A^{2} |R_{A}|^{-1} - mA^{2} |R_{A}|^{-1} + \frac{1}{2} f_{A}''(\theta_{t}) m2^{-t}.$$

Also we prove the bound $f_A^{\prime\prime}(y) \ll A^{O(1)}$ for $y \in (1/2,1]$.

Getting all of this together we get Theorem 2.

Recall the definition of Ω .

Let c_0 and C_0 be positive absolute constants, c_0 is small, C_0 is large. Let Ω be the set of positive integers M such that M=Am where

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$
- (ii) $m=p_1\dots p_t,\ t\geqslant 0.4\log\log M$ and $p_1< p_2<\dots < p_t$ are primes greater than 2^{C_0t} .

It is well-known that $\omega(M)$ is close to $\log\log X$ most of the time $(M\leqslant X)$, so $A\leqslant 2^{c_0t}\leqslant (\log X)^{\alpha}$; whereas it can be shown by sieve methods that

$$\Omega_0(X) := \#\{m \leqslant X : \mu(m) \neq 0, (m, P((\log X)^{\alpha})) = 1\} \sim \frac{X}{\alpha \log \log X}.$$

Sc

$$\# \left(\Omega \cap [1, X]\right) \gg \sum_{A \leqslant (\log X)^{\alpha}} \Omega_0(X/A) \gg \sum_{A \leqslant (\log X)^{\alpha}} \mu^2(A) \frac{X}{A \log \log(X/A)} \gg X.$$

Recall the definition of Ω .

Let c_0 and C_0 be positive absolute constants, c_0 is small, C_0 is large. Let Ω be the set of positive integers M such that M=Am where

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$;
- (ii) $m=p_1\dots p_t$, $t\geqslant 0.4\log\log M$ and $p_1< p_2<\dots < p_t$ are primes greater than 2^{C_0t}

It is well-known that $\omega(M)$ is close to $\log\log X$ most of the time $(M\leqslant X)$, so $A\leqslant 2^{c_0t}\leqslant (\log X)^{\alpha}$; whereas it can be shown by sieve methods that

$$\Omega_0(X) := \#\{m \leqslant X : \mu(m) \neq 0, (m, P\left((\log X)^\alpha\right)) = 1\} \sim \frac{X}{\alpha \log \log X}.$$

Sc

$$\# (\Omega \cap [1, X]) \gg \sum_{A \leqslant (\log X)^{\alpha}} \Omega_0(X/A) \gg \sum_{A \leqslant (\log X)^{\alpha}} \mu^2(A) \frac{X}{A \log \log(X/A)} \gg X.$$

Recall the definition of Ω .

Let c_0 and C_0 be positive absolute constants, c_0 is small, C_0 is large. Let Ω be the set of positive integers M such that M=Am where

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$;
- (ii) $m = p_1 \dots p_t, \ t \geqslant 0.4 \log \log M$ and $p_1 < p_2 < \dots < p_t$ are primes greater than $2^{C_0 t}$

It is well-known that $\omega(M)$ is close to $\log\log X$ most of the time $(M\leqslant X)$, so $A\leqslant 2^{c_0t}\leqslant (\log X)^{\alpha};$ whereas it can be shown by sieve methods that

$$\Omega_0(X) := \#\{m \leqslant X : \mu(m) \neq 0, (m, P\left((\log X)^\alpha\right)) = 1\} \sim \frac{X}{\alpha \log \log X}.$$

Sc

$$\# \left(\Omega \cap [1, X]\right) \gg \sum_{A \leqslant (\log X)^{\alpha}} \Omega_0(X/A) \gg \sum_{A \leqslant (\log X)^{\alpha}} \mu^2(A) \frac{X}{A \log \log(X/A)} \gg X.$$

Recall the definition of Ω .

Let c_0 and C_0 be positive absolute constants, c_0 is small, C_0 is large. Let Ω be the set of positive integers M such that M=Am where

- (i) A is square-free, (A, m) = 1 and $A \leq 2^{c_0 t}$;
- (ii) $m = p_1 \dots p_t, \ t \geqslant 0.4 \log \log M$ and $p_1 < p_2 < \dots < p_t$ are primes greater than $2^{C_0 t}$

It is well-known that $\omega(M)$ is close to $\log\log X$ most of the time $(M\leqslant X)$, so $A\leqslant 2^{c_0t}\leqslant (\log X)^{\alpha};$ whereas it can be shown by sieve methods that

$$\Omega_0(X) := \#\{m \leqslant X : \mu(m) \neq 0, (m, P((\log X)^{\alpha})) = 1\} \sim \frac{X}{\alpha \log \log X}.$$

So

$$\# \left(\Omega \cap [1,X]\right) \gg \sum_{A \leqslant (\log X)^{\alpha}} \Omega_0(X/A) \gg \sum_{A \leqslant (\log X)^{\alpha}} \mu^2(A) \frac{X}{A \log \log(X/A)} \gg X.$$

Lower bound for $S(R_M)$

Theorem 3. We have

$$S(R_M) \geqslant mA^2|R_A|^{-1}(2^{t+1}-1) + O\left(\frac{M^{2-c}}{|R_M|}\right)$$

for almost all M.

Lower bound for $S(R_M)$

Let $M\in[1,X]$ be "a standard" number and $p_1\leqslant p_2\leqslant p_3\leqslant ...\leqslant p_k$ are all prime divisors of M written with multiplicity. Let u>0 be fixed. How often do we have

$$\prod_{i < j} p_i < p_j^u \quad ?$$

Erdös-Bovey result (~ 1970):

There exists a continious increasing function $\tau(u)\colon [0,\infty)\to [0,1]$ with $\tau(0)=0$, $\lim_{u\to\infty}\tau(u)=1$ such that

$$\#\{j: \prod_{i < j} p_i < p_j^u\} \sim \tau(u) \log \log X$$

for almost all $M \in [1, X]$.

THANK YOU FOR YOUR ATTENTION!