Stringy Euler numbers of toric Calabi-Yau hypersurfaces

VICTOR BATYREV

Eberhard-Karls Universität Tübingen

Seminar Iskovskikh Moscow, 28 May 2020

Log desingularizations and discrepancies

Let X be a normal quasi-projective $\mathbb{Q} ext{-}\mathsf{Gorenstein}$ algebraic variety. Take a resolution of singularities of X

$$\rho: Y \to X$$

whose exceptional locus is a union $\bigcup_{i=1}^r D_i$ of smooth irreducible divisors with only normal crossings. Set $I:=\{1,\ldots,r\}$ and write

$$K_Y = \rho^* K_X + \sum_{i \in I} a_i D_i,$$

Definition

The rational numbers $a_i \in \mathbb{Q}$ $(i \in I)$ are called *discrepancies* of divisors D_i .

Singularities

Definition

Singularities of X are called at worst

- terminal if $a_i > 0$, $\forall i \in I$;
- canonical if $a_i \ge 0$, $\forall i \in I$;
- log-terminal if $a_i > -1$, $\forall i \in I$

The stringy Euler number $\chi_{\rm str}(X)$

Definition (Version 1)

Let $\rho: Y \to X$ be a resolution and $K_Y = \rho^* K_X + \sum_{i \in I} a_i D_i$. Define for any subset $J \subseteq I$:

$$D_{\emptyset} := Y, \ D_J := \bigcap_{j \in J} D_j \ (\emptyset \neq J \subseteq I).$$

The stringy Euler number of X is the rational number

$$\chi_{\text{str}}(X) := \sum_{\emptyset \subseteq J \subseteq I} \chi(D_J) \prod_{j \in J} \left(\frac{1}{a_j + 1} - 1 \right)$$
$$= \sum_{\emptyset \subseteq J \subseteq I} (-1)^{|J|} \chi(D_J) \prod_{j \in J} \frac{a_j}{a_j + 1}.$$

(a product over \emptyset is assumed to be 1)

Some properties of $\chi_{ m str}(X)$

General remarks

• The rational number $\chi_{\rm str}(X)$ does not depend on the choice of a desingularization $\rho: Y \to X$. In particular, if X is smooth, then

$$\chi_{\rm str}(X) = \chi(X)$$

(we can take $\rho = id$).

• If $\rho: Y \to X$ is a *crepant* desingularization $(a_i = 0 \ \forall i \in I)$, then

$$\chi_{\rm str}(X) = \chi(Y).$$

Examples: minimal desingularizations of ADE-singularities of surfaces.

• If X and X' are birational K-equivalent, then

$$\chi_{\rm str}(X) = \chi_{\rm str}(X').$$

The stringy Euler number $\chi_{\rm str}(X)$

Definition (Version 2)

The stringy Euler number of X is the rational number

$$\chi_{\mathrm{str}}(X) := \sum_{\emptyset \subseteq J \subseteq I} \chi(D_J^\circ) \prod_{j \in J} \left(\frac{1}{a_j + 1} \right),$$

where

$$D_J^\circ = D_J \setminus \bigcup_{j \notin J} D_j.$$

Stringy Euler numbers of toric varieties

Let $X=X_{\Sigma}$ be a \mathbb{Q} -Gorenstein d-dimensional **toric variety** of fan $\Sigma\subset N_{\mathbb{R}}$. Denote by $\omega:N_{\mathbb{R}}\to\mathbb{R}$ a Σ -piecewise linear function with $\omega(e_i)=1$ for any primitive lattice generators e_i of 1-dimensional cone $\mathbb{R}_{\geqslant 0}e_i\in\Sigma(1)$. A toric desingularization $\rho:Y\to X$ is determined by a regular refinement $\widehat{\Sigma}$ of Σ such the smooth toric divisors D_j correspond to 1-dimensional cones $\tau_j:=\mathbb{R}_{\geqslant 0}e_j\in\widehat{\Sigma}(1)$. One has $a_j=\omega(e_j)-1$ and $\chi(D_J^\circ)=0$ unless |J|=d and D_J° is a torus fixed point corresponding to a d-dimensional cone $\sigma\in\widehat{\Sigma}(d)$. The second version implies:

$$\chi_{
m str}(X) = \sum_{\sigma \in \widehat{\Sigma}(d)} \prod_{ au_j \prec \sigma} \left(rac{1}{a_j + 1}
ight)$$

Stringy Euler numbers of toric varieties

If a d-dimensional cone σ is generated by a \mathbb{Z} -basis $e_1,\ldots,e_d\in N$ and $\omega:N_{\mathbb{R}}\to\mathbb{R}$ is a linear function with positive values

$$\omega(e_i), 1 \leqslant i \leqslant d,$$

Then

$$\prod_{j=1}^d \left(\frac{1}{a_j+1}\right) = \prod_{j=1}^d \left(\frac{1}{\omega(e_j)}\right)$$

equals to the lattice normalized volume of the d-dimensional rational simplex $\sigma \cap \{\omega(x) \leq 1\}$.

$$\chi_{\rm str}(X) = \sum_{\sigma \in \widehat{\Sigma}(d)} \operatorname{Vol}_d(\sigma \cap \{\omega(x) \leqslant 1\}) = \operatorname{Vol}_d(\{\omega(x) \leqslant 1\}) = \operatorname{Shed}(\Sigma).$$

Examples

Example (log-terminal singularity

Quotient $X:=\mathbb{C}^2/\mu_n$ under the group action of $\mu_n:=\langle\zeta
angle$ on \mathbb{C}^2 :

$$(x,y)\mapsto (\zeta x,\zeta^k y),\ \gcd(n,k)=1.$$

One has $\chi(X) = 1$, but $\chi_{\rm str}(X) = n = |\mu_n|$.

Example (terminal singularity

Quotient $X:=\mathbb{C}^4/\mu_2$ under the group action of $\mu_2:=\langle\zeta
angle$ on \mathbb{C}^4 :

$$(x_1, x_2, x_3, x_4) \mapsto (-x_1, -x_2, -x_3, -x_4).$$

One has $\chi(X)=1$, but $\chi_{\rm str}(X)=2=|\mu_n|$.

Applications to MMP

Theorem

If two minimal models X and X' are birational, then

$$\chi_{\rm str}(X) = \chi_{\rm str}(X').$$

This implies that the stringy Euler number $\chi_{\rm str}$ is well-defined function on the birational classes $\langle X \rangle_{\rm bir}$ of algebraic varieties X of non-negative Kodaira dimension $\kappa(X)$.

Remark

The stringy Euler number of the birational class of an algebraic surface S with $\kappa(S) \geqslant 0$ equals the usual Euler number of its minimal birational model.

Remark

If the stringy Euler number of a given birational class $\langle * \rangle_{\rm bir}$ of algebraic varieties has non-integral value, then this birational class does not contain a smooth minimal model.

Applications to toric MMP (according to M. Reid)

Theorem (M. Reid, 1983)

Let X and X' be two projective \mathbb{Q} -Gorenstein toric varieties such that X' is obtained from X by either a toric divisorial Mori contraction $f:X\to X'$, or by a toric flip $f:X\dashrightarrow X'$, then one has

$$\chi_{\rm str}(X) > \chi_{\rm str}(X').$$

Since the stringy Euler number of a projective \mathbb{Q} -Gorenstein toric variety is a positive integer, the above monotone property implies a termination of toric flips.

Non-degenerate toric hypersurfaces

Let $M \cong \mathbb{Z}^d$ be a lattice of rank d. We consider M as the lattice of characters of a d-dimensional algebraic torus $\mathbb{T}_d \cong (\mathbb{C}^*)^d$.

Definition

A Laurent polynomial $f(\mathbf{t}) \in \mathbb{C}[M] \cong \mathbb{C}[t_1^{\pm 1}, \dots, t_d^{\pm 1}]$ is called non-degenerate if there exists a smooth projective torus embedding $\mathbb{T}_d \hookrightarrow X$ such that the Zariski closure \overline{Z}_f of the affine hypersurface $Z_f := \{f(\mathbf{t}) = 0\}$ is smooth and \overline{Z}_f together with toric divisors D_1, \dots, D_r form a set of smooth normal crossing divisors in X. If $\Delta := Newt(f) \subset M_\mathbb{R} := M \otimes \mathbb{R}$, then the non-degeneracy of f is a Zariski open condition on the coefficients a_m of

$$f(\mathbf{t}) = \sum_{m \in A} a_m \mathbf{t}^m, \ \Delta = \operatorname{conv}(A).$$

There are several different equivalent definitions of non-degenerate hypersurfaces (or non-degenerate Laurent polynomials)

Canonical Calabi-Yau varieties

Definition

A d-dimensional smooth projective normal variety X with at worst Gorenstein canonical singularities is called canonical Calabi-Yau variety if

- the canonical divisor K_X is trivial;
- $h^i(X, \mathcal{O}_X) = 0 \ (0 < i < d).$

Two natural questions

The following two natural questions were considered in [B. 2017]

Questions

- How to characterize d-dimensional lattice polytopes $\Delta \subset M_{\mathbb{R}}$ such that non-degenerate hypersurfaces Z_f with the Newton polytope Δ are birational to canonical Calabi-Yau varieties X?
- ② How to compute the stringy Euler number $\chi_{\rm str}(X)$ of canonical Calabi-Yau varieties X by a combinatoria formula based on the Newton polytope Δ ?

Definition

A *d*-dimensional lattice polytope $\Delta\subset M_{\mathbb{R}}$ is called *canonical Fano polytope*, if it contain exactly one lattice point *p* in its interior Δ° . For simplicity we assume that $p=0\in M$.

Definition

A d-dimensional lattice polytope $\Delta\subset M_{\mathbb{R}}$ is called canonical Fano polytope, if it contain exactly one lattice point p in its interior Δ° . For simplicity we assume that $p=0\in M$.

Theorem (Khovanskiî, 1978)

The geometric genus p_g of a non-degenerate toric hypersurface Z_f defined by Laurent polynomial f with Newton polytope Δ equals $\Delta^\circ \cap M$. In particular, $p_g = 1$ if and only if Δ is canonical Fano polytope.

Definition

A *d*-dimensional lattice polytope $\Delta \subset M_{\mathbb{R}}$ is called *canonical Fano polytope*, if it contain exactly one lattice point *p* in its interior Δ° . For simplicity we assume that $p=0\in M$.

Theorem (Khovanskiî, 1978)

The geometric genus p_g of a non-degenerate toric hypersurface Z_f defined by Laurent polynomial f with Newton polytope Δ equals $\Delta^\circ \cap M$. In particular, $p_g = 1$ if and only if Δ is canonical Fano polytope.

Theorem

There exists a natural bijection between d-dimensional canonical Fano polytopes Δ up to $GL(d,\mathbb{Z})$ -isomorphism and d-dimensional \mathbb{Q} -Gorenstein toric Fano varieties X_{Δ} with at worst canonical singularities up to isomorphism.

For any fixed dimension d there exist only finitely many d-dimensional canonical Fano polytopes up to a $GL(d,\mathbb{Z})$ -isomorphism.

- There exists exactly one canonical Fano polytope of dimension 1: $\Delta = [-1, 1]$.
- There exist exactly 16 canonical Fano polytopes of dimension 2.
- There exist exactly 674, 688 three-dimensional canonical Fano polytopes (Kasprzyk, 2010)
- The complete list of all 4-dimensional canonical Fano polytopes is still unknown.

Combinatorial duality

Denote $N:=\mathrm{Hom}(M,\mathbb{Z})$, $M_{\mathbb{R}}:=M\otimes\mathbb{R}$, $N_{\mathbb{R}}:=N\otimes\mathbb{R}$, and

$$\langle *, * \rangle : M_{\mathbb{R}} \times N_{\mathbb{R}} \to \mathbb{R}$$

the natural pairing.

Definition

A d-dimensional canonical Fano polytope $\Delta \subset M_{\mathbb{R}}$ is called *reflexive* if the *polar dual* polytope

$$\Delta^* := \{ y \in N_{\mathbb{R}} : \langle x, y \rangle \geqslant -1, \ \forall x \in \Delta \}$$

is also a canonical Fano polytope.

If Δ is reflexive, then Δ^* is also reflexive and $(\Delta^*)^* = \Delta$. This duality perfectly agrees with Mirror Symmetry. There exists a natural 1-to-1 correspondence between k-dimensional faces $\theta \prec \Delta$ and (d-k-1)-dimensional faces $\theta^* \prec \Delta^*$

The Hodge numbers of two d-dimensional smooth Calabi-Yau varieties V and V^* that are mirror symmetric to each other must satisfy the equalities

$$h^{p,q}(V) = h^{d-p,q}(V^*)$$

for all p,q ($0 \le p,q \le d$). In particular, the Euler number $\chi = \sum_{p,q} (-1)^{p+q} h^{p,q}$ must satisfy the equality

$$\chi(V) = (-1)^d \chi(V^*).$$

Combinatorial formula

Theorem (B., Dais 1994)

Let Δ be a d-dimensional reflexive polytope. Then the stringy Euler number of a general CY hypersurface $X \subset \mathbb{P}_{\Delta}$ equals

$$\chi_{\operatorname{str}}(X) = \sum_{k=1}^{d-2} (-1)^{k-1} \sum_{\theta \prec \Delta : \dim(\theta) = k} \operatorname{Vol}_k(\theta) \cdot \operatorname{Vol}_{d-k-1}(\theta^*).$$

If $X^*\subset \mathbb{P}^*_{\Delta}$ be the CY hypersurface corresponding to the dual polytope Δ^* , then

$$\chi(X) = (-1)^{d-1} \chi(X^*).$$

Quasi-smooth Calabi-Yau hypersurfaces

Definition

A Calabi-Yau hypersurface $X_w \subset \mathbb{P}(w_0, w_1, \ldots, w_d)$ defined by a weighted homogeneous polynomial W of degree $w = \sum_{i=0}^d w_i$ is called quasi-smooth if the partial derivatives $\partial W/\partial z_i$ ($0 \leqslant i \leqslant d$) form a regular sequence in $\mathbb{C}[z_0, z_1, \ldots, z_d]$.

Remark

The weighted projective space $\mathbb{P}(w_0, w_1, \dots, w_d)$ is a Gorenstein toric Fano variety if and only if each w_i divides w. In the latter case, one can choose W in Fermat-form:

$$W = \sum_{i=0}^{d} z_i^{w/w_i}.$$

Quasi-smooth Calabi-Yau hypersurfaces

Classifications:

- There exist exactly 95 families of quasi-smooth Calabi-Yau 2-folds (K3-surfaces) in $\mathbb{P}(w_0, w_1, w_2, w_3)$; (M. Reid, 1979)
- There exist exactly 7555 families of quasi-smooth Calabi-Yau 3-folds in $\mathbb{P}(w_0, w_1, w_2, w_3, w_4)$; (Kreuzer, Skarke 1998)
- There exist exactly 1,100,055 families of quasi-smooth Calabi-Yau 4-folds in $\mathbb{P}(w_0,w_1,w_2,w_3,w_4,w_5)$ (Lynker, Schimmrigk, Wisskirchen 1998), (Brown, Kasprzyk 2015)

Vafa's formula

Vafa's formula

$$\chi_{\mathrm{orb}}(X_w) = \frac{1}{w} \sum_{l,r=0}^{w-1} \prod_{0 \leqslant i \leqslant d: lq_i, rq_i \in \mathbb{Z}} \left(1 - \frac{1}{q_i}\right).$$

In this formula, one denotes $q_i:=rac{w_i}{w}\;(0\leqslant i\leqslant d)$, and one assumes

$$\prod_{0 \leqslant i \leqslant d : lq_i, rq_i \in \mathbb{Z}} \left(1 - \frac{1}{q_i}\right) = 1$$

if $lq_i, rq_i \notin \mathbb{Z}$ for all $i \in \{0, \ldots, d\}$.

Orbifold Euler number

Theorem, Ono-Roan 1993

Let $S^{2d+1}\subseteq\mathbb{C}^{d+1}\setminus\{0\}$ be the unit sphere. Consider the compact smooth (2d-1)-dimensional real manifold $S_w:=S^{2d+1}\cap\{W=0\}$ together with the S^1 -fibration $S_w\to X_w$ which is the restriction of the Seifert S^1 -fibration $S^{2d+1}\to\mathbb{P}(w_0,w_1,\ldots,w_d)$ to a quasi-smooth Calabi-Yau hypersurface X_w of degree $w=\sum_{i=0}^d w_i$. Then the S^1 -equivariant K-groups $K^i_{S^1}(S_w)$ (i=0,1) have finite rank and

$$\operatorname{rank} K^0_{S^1}(S_w) - \operatorname{rank} K^1_{S^1}(S_w) = \frac{1}{w} \sum_{l,r=0}^{w-1} : \prod_{0 \leqslant i \leqslant d : lq_i, rq_i \in \mathbb{Z}} \left(1 - \frac{1}{q_i}\right).$$

In particular, the last number is an integer.

The Laurent polynomial of Hori-Vafa

Consider *d*-dimensional algebraic torus:

$$\mathbb{T}_w^d := \{(x_0, x_1, \dots, x_d) \in (\mathbb{C}^*)^{d+1} \mid \prod_{i=0}^d x_i^{w_i} = 1\} \subseteq (\mathbb{C}^*)^{d+1}$$

whose lattice of characters M_{w} is determined by the short exact sequence

$$0\to\mathbb{Z}\to\mathbb{Z}^{d+1}\to M_w\to 0,$$

where the map $\mathbb{Z} \to \mathbb{Z}^{d+1}$ sends 1 to $(w_0, w_1, \ldots, w_d) \in \mathbb{Z}^{d+1}$. If x_i $(0 \leqslant i \leqslant d)$ are standard basis of characters of $(\mathbb{C}^*)^{d+1}$, the the sum $\sum_{i=0}^d x_i$ is a regular function on \mathbb{T}^d_w , a Laurent polynomial $f_w(\mathbf{t})$ that we call Hori-Vafa polynomial of weighted projective space $\mathbb{P}(w_0, w_1, \ldots, w_d)$.

The Laurent polynomial of Hori-Vafa

Example

Consider a sequence of weights w_0, w_1, \ldots, w_d such that $w_0 = 1$. Then one gets a splitting of the above short exact sequence and obtain an isomorphism $M_w \cong \mathbb{Z}^d$ such that the lattice vectors $v_1, \ldots, v_d \in \mathbb{Z}^d$ can be chosen as the standard \mathbb{Z} -basis and $v_0 = (-w_1, \ldots, -w_d)$. Then the Laurent polynomial $f_w \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]$ has the form

$$f_w(\mathbf{t}) = \sum_{i=0}^d \mathbf{t}^{v_i} = \frac{1}{t_1^{w_1} \cdots t_d^{w_d}} + t_1 + \cdots + t_d.$$

The Laurent polynomial of Hori-Vafa

Example

If all weights w_i are equal 1, we obtain the well-known polynomial

$$f(\mathbf{t}) = \frac{1}{t_1 \cdots t_d} + t_1 + \cdots + t_d$$

for usual d-dimensional projective space.

This Laurent polynomial describes LG-mirror of \mathbb{P}^d .

The Newton polytope of $f_w(\mathbf{t})$

The Newton polytope of the Hori-Vafa polynomial $f_w(\mathbf{t})$ is the lattice simplex Δ_w with lattice vertices $v_0, v_1, \ldots, v_d \in M_w$ generating the lattice M_w and satisfying the relation

$$\sum_{i=0}^d w_i v_i = 0.$$

The origin $0 \in M$ is an interior lattice point of Δ_w . Moreover, it is easy to show that the Laurent polynomial $f_w(\mathbf{t})$ is non-degenerate.

Mirrors of quasi-smooth Calabi-Yau hypersurfaces

Theorem (B., Schaller, 2020)

Let (w_0, w_1, \ldots, w_d) be a sequence of positive integers such that there exists a quasi-smooth Calabi-Yau hypersurface $X_w \subseteq \mathbb{P}(w_0, w_1, \ldots, w_d)$. Then the affine hypersurface $Z_w \subseteq \mathbb{T}^d_w$ defined by the Laurent polynomial $f_w(\mathbf{t}) = \sum_{i=0}^d \mathbf{t}^v_i$ is birational to a (d-1)-dimensional Calabi-Yau variety X^*_w and one has

$$\chi_{\rm str}(X_w^*) = (-1)^{d-1} \frac{1}{w} \sum_{l,r=0}^{w-1} \prod_{0 \leqslant i \leqslant d : lq_i, rq_i \in \mathbb{Z}} \left(1 - \frac{1}{q_i}\right) = (-1)^{d-1} \chi_{\rm orb}(X_w),$$

where $q_i = \frac{w_i}{w}$ $(i \in I)$.

Mirror conjecture for quasi-smooth CY hypersurfaces

The above theorem supports the following statement:

Conjecture (B., Schaller, 2020)

Assume that a weighted projective space $\mathbb{P}(w_0, w_1, \dots, w_d)$ contains a quasi-smooth Calabi-Yau hypersurface X_w of degree $w = \sum_{i=0}^d w_i$. Then the affine hypersurface $Z_w \subseteq \mathbb{T}_w^d$ defined by the Laurent polynomial f_w is birational to a mirror of X_w .

Two examples of Skarke

Example

Let $X_{43}\subset \mathbb{P}(1,1,6,14,21)$. Then X_{43} not quasi-smooth, but it is birational to a smooth CY 3-fold Y with $h^{1,1}(Y)=21$, $h^{2,1}(Y)=273$, and $\chi(Y)=-504$.

On the other hand, the affine hypersurface $Z_{43}\subseteq (\mathbb{C}^*)^4$

$$\frac{1}{t_1 t_2^6 t_3^{14} t_4^{21}} + t_1 + t_2 + t_3 + t_4 = 0.$$

is birational to a 3-dimensional Calabi-Yau variety X_{43}^* with the stringy Euler number

$$\chi_{\rm str}(X_{43}^*) = 506 \neq 504 = -\chi_{\rm str}(X_{43}) = -\chi(Y).$$

Therefore, X_{43}^* is not a mirror of X_{43} or Y.

Two examples of Skarke

Example

The Newton polytope of a general hypersurface $X_{13} \subseteq \mathbb{P}(1,1,2,4,5)$ is reflexive, but this CY-hypersurface is not quasi-smooth. One can show that the affine hypersurface $Z_{43} \subseteq (\mathbb{C}^*)^4$

$$\frac{1}{t_1 t_2^2 t_3^4 t_4^5} + t_1 + t_2 + t_3 + t_4 = 0.$$

is birational to a 3-dimensional Calabi-Yau variety X_{13}^{st} with the stringy Euler number

$$\chi_{\mathrm{str}}(X_{13}^*) = \frac{1032}{5} \not\in \mathbb{Z}.$$

Therefore, X_{13}^* can not be a mirror of X_{13} .